篇一:小升初数学复习重点归纳
数学是小升初考试中的一门重要科目,对于学生来说,熟练掌握数学的基础知识和解题技巧是至关重要的。为了帮助同学们更好地复习数学,本文将对小升初数学的重点内容进行归纳总结。
一、整数运算
整数运算是数学的基础,包括整数的加减乘除、整数的比较大小等。在复习过程中,同学们需要重点掌握整数的运算法则和运算性质,并能够熟练应用到解题中。
二、小数与分数
小数与分数是小升初数学中的重要概念,需要掌握小数与分数之间的转换关系,以及小数和分数的加减乘除运算规则。此外,还要注意小数和分数在实际问题中的应用,如长度、面积、体积等。
三、面积与体积
面积与体积是几何学中的重要概念,需要掌握各种图形的面积计算公式和立体图形的体积计算公式。在复习过程中,同学们要多做几何题,熟悉各种图形的特征和计算方法。
四、代数式与方程式
代数式与方程式是数学中的重要内容,需要掌握代数式的化简和展开方法,以及解一元一次方程和一元一次不等式的基本思路和解题方法。在复习过程中,同学们可以多做代数式和方程式相关的练习题,提高解题能力。
五、图形的相似与全等
图形的相似与全等是几何学中的重要内容,需要掌握相似图形的判定条件和全等图形的判定条件,以及相似图形和全等图形的性质和应用。在复习过程中,同学们要多做几何题,熟悉各种图形的相似和全等判定方法。
六、统计与概率
统计与概率是数学中的应用题型,需要掌握统计图表的读取和分析方法,以及概率计算的基本原理和应用。在复习过程中,同学们要多做统计与概率相关的题目,提高解题能力。
以上是小升初数学复习的重点内容归纳,同学们在复习过程中要注重理论知识的掌握和解题能力的提高,通过多做题和总结经验,相信可以取得好成绩。
篇二:小升初数学复习重点归纳
小升初数学考试是对学生数学知识掌握程度的一次考察,为了帮助同学们更好地复习数学,本文将对小升初数学的重点内容进行归纳总结。
一、整数运算
整数运算是数学的基础,包括整数的加减乘除、整数的比较大小等。同学们在复习过程中要重点掌握整数的运算法则和运算性质,并能够熟练应用到解题中。
二、小数与分数
小数与分数是小升初数学中的重要概念,需要掌握小数与分数之间的转换关系,以及小数和分数的加减乘除运算规则。此外,还要注意小数和分数在实际问题中的应用,如长度、面积、体积等。
三、面积与体积
面积与体积是几何学中的重要概念,需要掌握各种图形的面积计算公式和立体图形的体积计算公式。同学们在复习过程中要多做几何题,熟悉各种图形的特征和计算方法。
四、代数式与方程式
代数式与方程式是数学中的重要内容,需要掌握代数式的化简和展开方法,以及解一元一次方程和一元一次不等式的基本思路和解题方法。同学们可以通过多做代数式和方程式相关的练习题,提高解题能力。
五、图形的相似与全等
图形的相似与全等是几何学中的重要内容,需要掌握相似图形的判定条件和全等图形的判定条件,以及相似图形和全等图形的性质和应用。在复习过程中,同学们要多做几何题,熟悉各种图形的相似和全等判定方法。
六、统计与概率
统计与概率是数学中的应用题型,需要掌握统计图表的读取和分析方法,以及概率计算的基本原理和应用。同学们要多做统计与概率相关的题目,提高解题能力。
以上是小升初数学复习的重点内容归纳,同学们在复习过程中要注重理论知识的掌握和解题能力的提高,通过多做题和总结经验,相信可以取得好成绩。
小升初数学复习重点归纳 篇三
一、算术
1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:a + b = b + a
3、乘法交换律:a × b = b × a
4、乘法结合律:a × b × c = a ×(b × c)
5、乘法分配律:a × b + a × c = a × b + c
6、除法的性质:a &pide; b &pide; c = a &pide;(b × c)
7、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。 简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
8、有余数的除法: 被除数=商×除数+余数
二、方程、代数与等式
等式:等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
方程式:含有未知数的等式叫方程式。
一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
代数: 代数就是用字母代替数。
代数式:用字母表示的式子叫做代数式。如:3x =ab+c
三、体积和表面积
三角形的面积=底×高&pide;2。 公式 S= a×h&pide;2
正方形的面积=边长×边长 公式 S= a2
长方形的面积=长×宽 公式 S= a×b
平行四边形的面积=底×高 公式 S= a×h
梯形的面积=(上底+下底)×高&pide;2 公式 S=(a+b)h&pide;2
内角和:三角形的内角和=180度。
长方体的表面积=(长×宽+长×高+宽×高 ) ×2 公式:S=(a×b+a×c+b×c)×2
正方体的表面积=棱长×棱长×6 公式: S=6a2
长方体的体积=长×宽×高 公式:V = abh
长方体(或正方体)的体积=底面积×高 公式:V = abh
正方体的体积=棱长×棱长×棱长 公式:V = a3
圆的周长=直径×π 公式:L=πd=2πr
圆的面积=半径×半径×π 公式:S=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2
圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
圆锥的体积=1/3底面×积高。公式:V=1/3Sh
四、分数
分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的.分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
倒数的概念:1.如果两个数乘积是1,我们称一个是另一个的倒数。这两个数互为倒数。1的倒数是1,0没有倒数。
分数除以整数(0除外),等于分数乘以这个整数的倒数。
分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小
分数的除法则:除以一个数(0除外),等于乘这个数的倒数。
真分数:分子比分母小的分数叫做真分数。
假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
带分数:把假分数写成整数和真分数的形式,叫做带分数。
分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
五、数量关系计算公式
单价×数量=总价 2、单产量×数量=总产量
速度×时间=路程 4、工效×时间=工作总量
加数+加数=和 一个加数=和+另一个加数
被减数-减数=差 减数=被减数-差 被减数=减数+差
因数×因数=积 一个因数=积&pide;另一个因数
被除数&pide;除数=商 除数=被除数&pide;商 被除数=商×除数
六、长度单位:
1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
七、面积单位:
1平方千米=100公顷 1公顷=10000平方米
1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
1亩=666.666平方米。
八、体积单位
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1升=1立方分米=1000毫升 1毫升=1立方厘米
九、重量单位
1吨=1000千克 1千克= 1000克= 1公斤= 1市斤
十、比
什么叫比:两个数相除就叫做两个数的比。如:2&pide;5或3:6或1/3 比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18
比例的基本性质:在比例里,两外项之积等于两内项之积。
解比例:求比例中的未知项,叫做解比例。如3:χ=9:18
正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y
反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。 如:x×y = k( k一定)或k / x = y
十一、百分数
百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
要学会把小数化成分数和把分数化成小数的化发。
十二、倍数与约数
最大公约数:几个数公有的约数,叫做这几个数的公约数。公因数有有限个。其中最大的一个叫做这几个数的最大公约数。
最小公倍数:几个数公有的倍数,叫做这几个数的公倍数。公倍数有无限个。其中最小的一个叫做这几个数的最小公倍数。
互质数: 公约数只有1的两个数,叫做互质数。相临的两个数一定互质。两个连续奇数一定互质。1和任何数互质。
通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)
约分:把一个分数的分子、分母同时除以公约数,分数值不变,这个过程叫约分。
最简分数:分子、分母是互质数的分数,叫做最简分数。分数计算到最后,得数必须化成最简分数。
质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。
质因数:如果一个质数是某个数的因数,那么这个质数就是这个数的质因数。
分解质因数:把一个合数用质因数相成的方式表示出来叫做分解质因数。
奇数与偶数
偶数:个位是0,2,4,6,8的数。
奇数:个位不是0,2,4,6,8的数。
偶数偶数=偶数 奇数奇数=奇数 奇数偶数=奇数
偶数个偶数相加是偶数,奇数个奇数相加是奇数。
偶数偶数=偶数 奇数奇数=奇数 奇数偶数=偶数
相临两个自然数之和为奇数,相临自然数之积为偶数。
如果乘式中有一个数为偶数,那么乘积一定是偶数。
奇数偶数
整除
如果c|a, c|b,那么c|(ab)
如果,那么b|a, c|a
如果b|a, c|a,且(b,c)=1, 那么bc|a
如果c|b, b|a, 那么c|a
小数
自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。
纯小数:个位是0的小数。
带小数:各位大于0的小数。
循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 141414
不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。如3. 141592654
无限循环小数:一个小数,从小数部分到无限位数,一个数字或几个数字依次不断的重复出现,这样的小数叫做无限循环小数。如3. 141414
无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3. 141592654
利润
利息=本金利率时间(时间一般以年或月为单位,应与利率的单位相对应)
利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率