高中不等式知识点总结【推荐3篇】

时间:2019-03-02 04:13:20
染雾
分享
WORD下载 PDF下载 投诉

高中不等式知识点总结 篇一

不等式是高中数学中重要的一部分内容。在解决实际问题中,不等式是一种常见的数学工具。掌握不等式的知识点,对于学习数学和解决实际问题都有很大的帮助。本篇文章将总结高中不等式的主要知识点,帮助读者更好地理解和应用不等式。

一、不等式的基本概念

不等式是指两个数之间的关系,用符号“<”、“>”、“≤”、“≥”表示。例如,a < b表示a小于b,a > b表示a大于b,a ≤ b表示a小于等于b,a ≥ b表示a大于等于b。

二、不等式的性质

1. 加减性:对于不等式两边同时加或减一个数,不等号的方向不变。例如,若a < b,则a + c < b + c。

2. 乘除性:对于不等式两边同时乘或除一个正数,不等号的方向不变;对于不等式两边同时乘或除一个负数,不等号的方向改变。例如,若a < b,c > 0,则ac < bc;若a < b,c < 0,则ac > bc。

3. 倒数性:对于不等式两边同时取倒数,不等号的方向改变。例如,若a < b,则1/a > 1/b。

三、一元一次不等式

一元一次不等式是指只包含一个变量的一次不等式。解一元一次不等式的方法与解一元一次方程类似,可以通过移项和化简的方式得到不等式的解集。

四、一元二次不等式

一元二次不等式是指只包含一个变量的二次不等式。解一元二次不等式的方法与解一元二次方程的方法类似,可以通过开方、配方法和绘制图像的方式得到不等式的解集。

五、绝对值不等式

绝对值不等式是指含有绝对值符号的不等式。解绝对值不等式的方法有两种:一种是根据绝对值的定义进行讨论,将不等式分成多个不等式进行求解;另一种是利用绝对值的性质进行化简,将绝对值不等式转化为一元一次不等式进行求解。

六、不等式的应用

不等式在实际问题中有广泛的应用,如优化问题、约束条件问题等。解决这些问题时,可以将实际问题抽象成不等式,并根据不等式的性质和解的方法进行求解。

综上所述,高中不等式是数学中重要的一部分内容。掌握不等式的基本概念、性质和解法,对于学习数学和解决实际问题都有很大的帮助。希望本文所总结的不等式知识点能够帮助读者更好地理解和应用不等式。

高中不等式知识点总结 篇二

不等式是高中数学中重要的一部分内容,也是解决实际问题的常见数学工具。掌握不等式的知识点,对于学习数学和解决实际问题都有很大的帮助。本篇文章将继续总结高中不等式的其他知识点,帮助读者更好地理解和应用不等式。

一、不等式的解集表示

不等式的解集表示有两种形式:集合表示和区间表示。集合表示是将不等式的解集用大括号{}表示,例如{x | x > 1}表示大于1的实数集合;区间表示是将不等式的解集用区间表示,例如(1, +∞)表示大于1的实数区间。

二、一元一次不等式组

一元一次不等式组是指多个一元一次不等式组成的集合。解一元一次不等式组的方法是先求解每个不等式的解集,然后取它们的交集作为不等式组的解集。

三、二元一次不等式

二元一次不等式是指含有两个变量的一次不等式。解二元一次不等式的方法是将不等式转化为标准形式,然后利用图像法或代数法求解。

四、二次函数与一次不等式

二次函数与一次不等式的关系是高中数学中一个重要的内容。通过对二次函数的图像进行分析,可以得到一次不等式的解集。

五、不等式的证明

不等式的证明是数学中常见的问题。常用的不等式证明方法有数学归纳法、反证法和数学推理法等。

六、不等式的应用

不等式在实际问题中有广泛的应用。例如,在优化问题中,可以通过不等式进行求解;在约束条件问题中,也可以通过不等式进行求解。

综上所述,高中不等式是数学中重要的一部分内容。掌握不等式的解集表示、一元一次不等式组、二元一次不等式、二次函数与一次不等式、不等式的证明和应用等知识点,对于学习数学和解决实际问题都有很大的帮助。希望本文所总结的不等式知识点能够帮助读者更好地理解和应用不等式。

高中不等式知识点总结 篇三

高中不等式知识点总结

  在平日的学习中,是不是听到知识点,就立刻清醒了?知识点是指某个模块知识的重点、核心内容、关键部分。为了帮助大家更高效的学习,下面是小编收集整理的高中不等式知识点总结,希望能够帮助到大家。

  一、 知识点

  1.不等式性质

  比较大小方法:

  (1)作差比较法

  (2)作商比较法

  不等式的基本性质

  ①对称性:a > bb > a

  ②传递性: a > b, b > ca > c

  ③可加性: a > b a + c > b + c

  ④可积性: a > b, c > 0ac > bc;

  a > b, c < 0ac < bc;

  ⑤加法法则: a > b, c > d a + c > b + d

  ⑥乘法法则:a > b > 0, c > d > 0 ac > bd

  ⑦乘方法则:a > b > 0, an > bn (n∈N)

  ⑧开方法则:a > b > 0,

  2.算术平均数与几何平均数定理:

  (1)如果a、b∈R,那么a2 + b2 ≥2ab(当且仅当a=b时等号)

  (2)如果a、b∈R+,那么(当且仅当a=b时等号)推广:如果为实数,则

  重要结论

  1)如果积xy是定值P,那么当x=y时,和x+y有最小值2;

  (2)如果和x+y是定值S,那么当x=y时,和xy有最大值S2/4。

  3.证明不等式的常用方法:

  比较法:比较法是最基本、最重要的方法。当不等式的两边的差能分解因式或能配成平方和的形式,则选择作差比较法;当不等式的两边都是正数且它们的商能与1比较大小,则选择作商比较法;碰到绝对值或根式,我们还可以考虑作平方差。

  综合法:从已知或已证明过的不等式出发,根据不等式的性质推导出欲证的不等式。综合法的放缩经常用到均值不等式。

  分析法:不等式两边的联系不够清楚,通过寻找不等式成立的充分条件,逐步将欲证的不等式转化,直到寻找到易证或已知成立的结论。

  4.不等式的解法

  (1) 不等式的有关概念

  同解不等式:两个不等式如果解集相同,那么这两个不等式叫做同解不等式。

  同解变形:一个不等式变形为另一个不等式时,如果这两个不等式是同解不等式,那么这种变形叫做同解变形。

  提问:请说出我们以前解不等式中常用到的同解变形

  去分母、去括号、移项、合并同类项

  (2) 不等式ax > b的解法

  ①当a>0时不等式的解集是{x|x>b/a};

  ②当a<0时不等式的解集是{x|x

  ③当a=0时,b<0,其解集是R;b0, 其解集是ф。

  (3) 一元二次不等式与一元二次方程、二次函数之间的关系

  (4)绝对值不等式

  |x|0)的解集是{x|-a

  o o

  -a   0   a

  |x|>a(a>0)的解集是{x|x<-a或x>a},几何表示为:

  o o

  -a 0 a

  小结:解绝对值不等式的关键是-去绝对值符号(整体思想,分类讨论)转化为不含绝对值的不等式,通常有下列三种解题思路:

  (1)定义法:利用绝对值的意义,通过分类讨论的方法去掉绝对值符号;

  (2)公式法:| f(x) | > a f(x) > a或f(x) < -a;| f(x) | < a -a

  (3)平方法:| f(x) | > a(a>0) f2(x) > a2;| f(x) | < a(a>0) f2(x) < a2;(4)几何意义。

  (5)分式不等式的解法

  (6)一元高次不等式的解法

  数轴标根法

  把不等式化为f(x)>0(或<0)的形式(首项系数化为正),然后分解因式,再把根按照从小到大的顺序在数轴上标出来,从右边入手画线,最后根据曲线写出不等式的解。

  (7)含有绝对值的不等式

  定理:|a| - |b|≤|a+b|≤|a| + |b|

  |a| - |b|≤|a+b|

  中当b=0或|a|>|b|且ab<0等号成立

  |a+b|≤|a| + |b|

  中当且仅当ab≥0等号成立

  推论1:|a1 + a2 + a3| ≤|a1 | +| a2 | + | a3|

  推广:|a1 + a2 +...+ an| ≤|a1 | +| a2 | +...+ | an|

  推论2:|a| - |b|≤|a-b|≤|a| + |b|

  二、常见题型专题总结:

  专题一:利用不等式性质,判断其它不等式是否成立

  1、a、b∈R,则下列命题中的真命题是( C )

  A、若a>b,则|a|>|b| B、若a>b,则1/a<1/b

  C、若a>b,则a3>b3       D、若a>b,则a/b>1

  2、已知a<0.-1

  A、a>ab>ab2 B、ab2>ab>a

  C、ab>a>ab2 D、ab>ab2>a

  3、当0

  A、(1a)1/b >(1a)b B、(1+a)a>(1+b)b

  C、(1a)b >(1a)b/2 D、(1a)a>(1b)b

  4、若loga3>logb3>0,则a、b的关系是( B )

  A、0a>1

  C、0

  5、若a>b>0,则下列不等式①1/a<1 a2="">b2;③lg(a2+1)>lg(b2+1);④2a>2b中成立的是( A )

  A、①②③④  B、①②③   C、①②    D、③④

  (二)比较大小

  1、若0<α<β<π/4,sinα+cosα=a,sinβ+cosβ=b,则( A )

  A、ab     C、ab<1 ab="">2

  2、a、b为不等的正数,n∈N,则(anb+abn)-(an-1+bn-1)的符号是( C )

  A、恒正            B、恒负

  C、与a、b的大小有关      D、与n是奇数或偶数有关

  3、设1lg2x>lg(lgx)

  4、设a>0,a≠1,比较logat/2与loga(t+1)/2的大小。

  分析:要比较大小的式子较多,为避免盲目性,可先取特殊值估测各式大小关系,然后用比较法(作差)即可。

  (三)利用不等式性质判断P是Q的充分条件和必要条件

  1、设x、y∈R,判断下列各题中,命题甲与命题乙的充分必要关系

  ⑴命题甲:x>0且y>0,  命题乙:x+y>0且xy>0 充要条件

  ⑵命题甲:x>2且y>2,  命题乙:x+y>4且xy>4     充分不必要条件

  2、已知四个命题,其中a、b∈R

  ①a2

  3、"a+b>2c"的一个充分条件是( C )

  A、a>c或b>c B、a>c或bc且b>c  D、a>c且b

  (四)范围问题

  1、设60

  2、若二次函数y=f(x)的图象过原点,且1≤f(1)≤2,3≤f(1)≤3,求f(2)的范围。

  (五)均值不等式变形问题

  1、当a、b∈R时,下列不等式不正确的是( D )

  A、a2+b2≥2|a|?|b| B、(a/2+b/2)2≥ab

  C、(a/2+b/2)2≤a2/2+b2/2 D、log1/2(a2+b2)≥log1/2(2|a|?|b|)

  2、x、y∈(0,+∞),则下列不等式中等号不成立的是( A )

  C、(x+y)(1/x+1/y)≥4 D、(lgx/2+lgy/2)2≤lg2x/2+lg2y/2

  3、已知a>0,b>0,a+b=1,则(1/a21)(1/b21)的最小值为( D )

  A、6       B、7       C、8       D、9

  4、已知a>0,b>0,c>0,a+b+c=1,求证:1/a+1/b+1/c≥9

  5、已知a>0,b>0,c>0,d>0,求证:

  (六)求函数最值

  1、若x>4,函数

  5、大、-6

  2、设x、y∈R, x+y=5,则3x+3y的最小值是( )D

  A、10      B、      C、      D、

  3、下列各式中最小值等于2的是( )D

  A、x/y+y/x B、 C、tanα+cotα D、2x+2-x

  4、已知实数a、b、c、d满足a+b=7,c+d=5,求(a+c)2+(b+d)2的最小值。

  5、已知x>0,y>0,2x+y=1,求1/x+1/y的最小值。

  (七)实际问题

  1、98(高考)如图,为处理含有某种杂质的污水,要制造一个底宽为2cm的无盖长方体沉淀箱,污水从A孔流入,经沉淀后从B孔流出,设箱体的长度为am,高度为bm,已知流出的水中该杂质的质量分数与a、b的乘积ab成反比,现有制箱材料60m2,问当a、b各为多少米时,沉淀后流出的水中该杂质的质量分数最小(A、B孔的面积忽略不计)。

  解一:设流出的水中杂质的质量分数为y,

  由题意y=k/ab,其中k为比例系数(k>0)

  据题设2×2b+2ab+2a=60(a>0,b>0)

  由a>0,b>0可得0

  令t=2+a,则a=t-2从而当且仅当t=64/t,即t=8,a=6时等号成立。∴y=k/ab≥k/18

  当a=6时,b=3,

  综上所述,当a=6m,b=3m时,经沉淀后流出的.水中该杂质的质量分数最小。

  解二:设流出的水中杂质的质量分数为y,由题意y=k/ab,其中k为比例系数(k>0)

  要求y的最小值,即要求ab的最大值。

  据题设2×2b+2ab+2a=60(a>0,b>0),即a+2b+ab=30

  即a=6,b=3时,ab有最大值,从而y取最小值。

  综上所述,当a=6m,b=3m时,经沉淀后流出的水中该杂质的质量分数最小。

  2、某工厂有旧墙一面长14米,现准备利用这面旧墙建造平面图形为矩形,面积为126  米2的厂房,工程条件是:①建1米新墙的费用为a元;②修1米旧墙的费用为a/4元;③拆去1米旧墙用所得材料建1米新墙的费用为a/2元.经过讨论有两种方案:⑴利用旧墙的一段x(x<14)米为矩形厂房的一面边长;⑵矩形厂房的一面长为x(x≥14).问如何利用旧墙,即x为多少米时,建墙费用最省?⑴⑵两种方案哪种方案最好?

  解:设总费用为y元,利用旧墙的一面矩形边长为x米,则另一边长为126/x米。

  ⑴若利用旧墙的一段x米(x<14)为矩形的一面边长,则修旧墙的费用为x?a/4元,剩余的旧墙拆得的材料建新墙的费用为(14-x)?a/2元,其余的建新墙的费用为(2x+ 2?126/x-14)?a元,故总费用 当且仅当x=12时等号成立,∴x=12时ymin=7a(6-1)=35a。

  ⑵若利用旧墙的一段x米(x≥14)为矩形的一面边长,则修旧墙的费用为x?a/4元,建新墙的费用为(2x+ 2?126/x-14)?a元,故总费用

  设f(x)=x+126/x, x2>x1≥14,则f(x2)-f(x1)= x2+126/x2-(x1+126/x1)

  =(x2x1)(1126/x1x2)>0∴f(x)=x+126/x在[14,+∞)上递增,∴f(x)≥f(14)

  ∴x=14时ymin=7a/2+2a(14+126/14-7)=35.5a

  综上所述,采用方案⑴,即利用旧墙12米为矩形的一面边长,建墙费用最省。

  (八)比较法证明不等式

  1、已知a、b、m、n∈R+,证明:am+n+bm+n≥ambn+anbm

  变:已知a、b∈R+,证明:a3/b+b3/a≥a2+b2

  2、已知a、b∈R+,f(x)=2x2+1,a+b=1,证明:对任意实数p、q恒有a?f(p)+b?f(q)≥f(ap+bq)

  (九)综合法证明不等式

  1、已知a、b、c为不全相等的正数,求证:

  2、已知a、b、c∈R,且a+b+c=1,求证:a2+b2+c2≥1/3

  3、已知a、b、c为不全相等的正数,且abc=1,求证:

  4、已知a、b∈R+,a+b=1,求证:

  (十)分析法证明不等式

  1、已知a、b、c为不全相等的正数,求证:bc/a+ac/b+ab/c>a+b+c

  2、已知函数f(x)=lg(1/x-1),x1、x2∈(0,1/2),且x1≠x2,求证:

  3、设实数x,y满足y+x2=0,0

  (十一)反证法、放缩法、构造法、判别式法、换元法等证明不等式

  1、设f(x)=x2+ax+b,求证:|f(1)|、|f(2)|、|f(3)|中至少有一个不小于1/2。

  2、若x2+y2≤1,求证|x2+2xy-y2|≤.

  3、已知a>b>c,求证:

  4、已知a、b、c∈R+,且a+b>c求证:.

  5、已知a、b、c∈R,证明:a2+ac+c2+3b(a+b+c)≥0,并指出等号何时成立。

  分析:整理成关于a的二次函数f(a)=a2+(c+3b)a+3b2+3bc+c2

  ∵Δ=(c+3b)2-4(3b2+3bc+c2)=-3(b2+2bc+c2)≤0

  ∴f(a)≥0

  6、已知:x2-2xy + y2 + x + y + 1=0,求证:1/3≤y/x≤3

  7、在直角三角形ABC中,角C为直角,n≥2且n∈N,求证:cn≥an + bn

  (十二)解不等式

  1、解不等式:

  2、解关于x的不等式:

  拓展

  高中数学不等式的基本性质知识点

  1.不等式的定义:a-bb, a-b=0a=b, a-b0a

  ① 其实质是运用实数运算来定义两个实数的大小关系。它是本章的基础,也是证明不等式与解不等式的主要依据。

  ②可以结合函数单调性的证明这个熟悉的知识背景,来认识作差法比大小的理论基础是不等式的性质。

  作差后,为判断差的符号,需要分解因式,以便使用实数运算的符号法则。

  2.不等式的性质:

  ① 不等式的性质可分为不等式基本性质和不等式运算性质两部分。

  不等式基本性质有:

  (1) abb

  (2) acac (传递性)

  (3) ab+c (cR)

  (4) c0时,abc

  c0时,abac

  运算性质有:

  (1) ada+cb+d。

  (2) a0, c0acbd。

  (3) a0anbn (nN, n1)。

  (4) a0isin;N, n1)。

  应注意,上述性质中,条件与结论的逻辑关系有两种:“”和“”即推出关系和等价关系。一般地,证明不等式就是从条件出发施行一系列的推出变换。解不等式就是施行一系列的等价变换。因此,要正确理解和应用不等式性质。

  ② 关于不等式的性质的考察,主要有以下三类问题:

  (1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立。

  (2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小。

  (3)利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系。

  不等式的基本性质知识点的相关内容就是这些,希望考生可以深入理解,全面把握。

  高中数学关于集合不等式和简易逻辑知识点

  重点知识归纳、总结

  (1)集合的分类

  (2)集合的运算

  ①子集,真子集,非空子集;

  ②A∩B={xx∈A且x∈B}

  ③A∪B={xx∈A或x∈B}

  ④ A={xx∈S且x A},其中A S.

  2、不等式的解法

  (1)含有绝对值的不等式的解法

  ①x0) -a

  x>a(a>0) x>a,或x<-a.

  ②f(x)

  f(x)>g(x) f(x)>g(x)或f(x)<-g(x).

  ③f(x)<g(x) [f(x)]2<[g(x)]2 [f(x)+g(x)]·[f(x)-g(x)]<0.

  ④对于含有两个或两个以上的绝对值符号的绝对值不等式,利用“零点分段讨论法”去绝对值. 如解不等式:x+3-2x-1<3x+2.

  3、简易逻辑知识

  逻辑联结词 “或”、“且”、“非”是判断简单合题与复合命题的依据;真值表是由简单命题和真假判断复合命题真假的依据,理解好四种命题的关系,对判断命题的真假有很大帮助;掌握好反证法证明问题的步骤。

  (2)复合命题的真值表

  非p形式复合命题的真假可以用下表表示.

  p 非p

  真 假

  假 真

  p且q形式复合命题的真假可以用下表表示.

  p或q形式复合命题的真假可以用下表表示.

  (3)四种命题及其相互之间的关系

  一个命题与它的逆否命题是等价的.

  (4)充分、必要条件的判定

  ①若p q且q p,则p是q的充分不必要条件;

  ②若p q且q p,则p是q的必要不充分条件;

  ③若p q且q p,则p是q的充要条件;

  ④若p q且q p,则p是q的既不充分也不必要条件.

高中不等式知识点总结【推荐3篇】

手机扫码分享

Top