高一数学教学工作计划【精简6篇】

时间:2012-03-04 02:33:23
染雾
分享
WORD下载 PDF下载 投诉

高一数学教学工作计划 篇一

在高一数学教学工作计划中,我们将着重关注以下几个方面:学科知识的系统性学习,学生自主学习能力的培养,教学方法的创新,学生学习兴趣的激发,以及与家长的密切合作。通过这些方面的努力,我们旨在提高学生的数学水平,培养他们的数学思维和解决问题的能力,以及激发他们对数学的兴趣。

首先,我们将注重学科知识的系统性学习。在高一数学课程中,学生将学习到一系列的数学知识,包括函数、三角函数、数列与数学归纳法、概率与统计等。我们将根据教学大纲的要求,安排有序的课程内容和教学进度,确保学生在高一的学习过程中能够系统地掌握这些知识。

其次,我们将注重培养学生的自主学习能力。数学是一门需要不断练习和思考的学科,因此,我们将鼓励学生积极参与课堂讨论和问题解答,并提供适当的练习和作业,帮助学生巩固所学知识。同时,我们还将指导学生学会利用各种学习资源,如教科书、参考书、互联网等,进行自主学习和查漏补缺。

第三,我们将注重教学方法的创新。数学是一门抽象的学科,对于一些学生来说可能较为难以理解和掌握。因此,我们将尝试采用多种教学方法和技巧,如情景教学、案例教学、探究式教学等,以激发学生的学习兴趣,并帮助他们更好地理解和应用数学知识。

此外,我们还将注重激发学生对数学的兴趣。数学是一门有趣的学科,但有时学生可能会因为枯燥的计算和推导而感到乏味。因此,我们将设计一些有趣的数学问题和活动,引导学生主动参与,并将数学与生活实际相结合,让学生感受到数学的应用和魅力。

最后,我们将与家长保持密切合作。家长是学生教育的重要参与者,他们对学生的学习和成长有着重要的影响。因此,我们将与家长保持良好的沟通,及时了解学生的学习情况和问题,并与家长共同制定并落实学习计划,共同关心和支持学生的学习。

通过以上的努力,我们相信学生的数学水平和学习能力将得到有效的提高,他们将更加自信和乐观地面对数学学习,同时也将受益于数学思维和解决问题的能力的培养。我们将不遗余力地为学生的数学学习提供支持和帮助,助力他们在高一的学习道路上取得优异的成绩。

高一数学教学工作计划 篇二

在高一数学教学工作计划中,我们将重点关注以下几个方面:知识的掌握与应用,思维能力的培养,学习方法的指导,以及与学生的个性化教学。通过这些方面的努力,我们旨在提高学生的数学学习效果,培养他们的数学思维和解决问题的能力,以及帮助他们找到适合自己的学习方法。

首先,我们将注重知识的掌握与应用。高一数学课程中的知识内容较为广泛和抽象,对于学生来说可能较为困难。因此,我们将采用分步骤的教学方法,帮助学生逐步理解和掌握知识点,并通过大量的练习和应用题目,巩固所学的知识。同时,我们也将注重培养学生运用所学知识解决实际问题的能力,让他们明白数学在生活中的应用和意义。

其次,我们将注重思维能力的培养。数学学科强调逻辑思维和抽象推理,因此,我们将通过启发式教学和解题策略的指导,帮助学生培养和发展自己的思维能力。例如,我们将教授学生一些解题的方法和技巧,如归纳法、逆向思维等,引导他们掌握解决问题的思路和方法。

第三,我们将注重学习方法的指导。每个学生都有不同的学习习惯和方式,因此,我们将与学生进行个别指导,帮助他们找到适合自己的学习方法。我们将教授学生如何做好笔记,如何高效地利用课余时间,如何制定学习计划等,以帮助他们提高学习效率和学习成果。

此外,我们还将注重个性化教学。每个学生都有不同的学习特点和进度,因此,我们将根据学生的实际情况,进行个别化的辅导和教学。我们将及时发现和解决学生的学习问题和困难,并根据学生的需求,提供个性化的学习资源和辅导,帮助他们克服困难,提高学习效果。

通过以上的努力,我们相信学生的数学学习效果和能力将得到有效的提高,他们将更加自信和乐观地面对数学学习,同时也将受益于数学思维和解决问题的能力的培养。我们将全力以赴地为学生的数学学习提供支持和帮助,助力他们在高一的学习道路上取得优异的成绩。

高一数学教学工作计划 篇三

课本从学生熟悉的集合(自然数的集合、有理数的集合等)出发,通过类比实数间的大小关系引入集合间的关系,同时,结合相关内容介绍子集等概念.在安排这部分内容时,课本注重体现逻辑思考的方法,如类比等.

值得注意的问题:在集合间的关系教学中,建议重视使用venn图,这有助于学生通过体会直观图示来理解抽象概念;随着学习的深入,集合符号越来越多,建议教学时引导学生区分一些容易混淆的关系和符号,例如∈与?的区别.

1.理解集合之间包含与相等的含义,能识别给定集合的子集,能判断给定集合间的关系,提高利用类比发现新结论的能力.

2.在具体情境中,了解空集的含义,掌握并能使用venn图表达集合的关系,加强学生从具体到抽象的思维能力,树立数形结合的思想.

教学重点:理解集合间包含与相等的含义.

教学难点:理解空集的含义.

1课时

思路1.实数有相等、大小关系,如5=5,5<7 5="">3等等,类比实数之间的关系,你会想到集合之间有什么关系呢?(让学生自由发言,教师不要急于作出判断,而是继续引导学生)

欲知谁正确,让我们一起来观察、研探.

思路2.复习元素与集合的关系——属于与不属于的关系,填空:(1)0n;(2)2q;(3)-1.5r.

类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(答案:(1)∈;(2)?;(3)∈)

(1)观察下面几个例子:

①a={1,2,3},b={1,2,3,4,5};

②设a为国兴中学高一(3)班男生的全体组成的集合,b为这个班学生的全体组成的集合;

③设c={x|x是两条边相等的三角形},d={x|x是等腰三角形};

④e={2,4,6},f={6,4,2}.

你能发现两个集合间有什么关系吗?

(2)例子①中集合a是集合b的子集,例子④中集合e是集合f的子集,同样是子集,有什么区别?

(3)结合例子④,类比实数中的结论:“若a≤b,且b≤a,则a=b”,在集合中,你发现了什么结论?

(4)按升国旗时,每个班的同学都聚集在一起站在旗杆附近指定的区域内,从楼顶向下看,每位同学是哪个班的,一目了然.试想一下,根据从楼顶向下看的,要想直观表示集合,联想集合还能用什么表示?

(5)试用venn图表示例子①中集合a和集合b.

(6)已知a?b,试用venn图表示集合a和b的关系.

(7)任何方程的解都能组成集合,那么x2+1=0的实数根也能组成集合,你能用venn图表示这个集合吗?

(8)一座房子内没有任何东西,我们称为这座房子是空房子,那么一个集合没有任何元素,应该如何命名呢?

(9)与实数中的结论“若a≥b,且b≥c,则a≥c”相类比,在集合中,你能得出什么结论?

活动:教师从以下方面引导学生:

(1)观察两个集合间元素的特点.

(2)从它们含有的元素间的关系来考虑.规定:如果a b,但存在x∈b,且x a,我们称集合a是集合b的真子集,记作a b(或b a).

(3)实数中的“≤”类比集合中的 .

(4)把指定位置看成是由封闭曲线围成的,学生看成集合中的元素,从楼顶看到的就是把集合中的元素放在封闭曲线内.教师指出:为了直观地表示集合间的关系,我们常用平面上封闭曲线的内部代表集合,这种图称为venn图.

(5)封闭曲线可以是矩形也可以是椭圆等等,没有限制.

(6)分类讨论:当a b时,a b或a=b.

(7)方程x2+1=0没有实数解.

(8)空集记为 ,并规定:空集是任何集合的子集,即 a;空集是任何非空集合的真子集,即 a(a≠ ).

(9)类比子集.

(1)①集合a中的元素都在集合b中;

②集合a中的元素都在集合b中;

③集合c中的元素都在集合d中;

④集合e中的元素都在集合f中.

可以发现:对于任意两个集合a,b有下列关系:集合a中的元素都在集合b中;或集合b中的元素都在集合a中.

(2)例子①中a b,但有一个元素4∈b,且4 a;而例子②中集合e和集合f中的元素完全相同.

(3)若a b,且b a,则a=b.

(4)可以把集合中元素写在一个封闭曲线的内部来表示集合.

(5)如图1121所示表示集合a,如图1122所示表示集合b.

图1-1-2-1 图1-1-2-2

(6)如图1-1-2-3和图1-1-2-4所示.

图1-1-2-3 图1-1-2-4

(7)不能.因为方程x2+1=0没有实数解.

(8)空集.

高一数学教学工作计划 篇四

我们要培养学生在数学课程教学的基础上,提高自身的数学素养,满足个人发展与社会进步的要求。主要目标如下:

1、掌握主要的数学基础知识和基本技能,理解基本的数学概念和数学的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

2、提高空间想像、抽象概括、推理论证、运算求解、数据处理和数形结合的思想等基本能力。

3、提高分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

5、提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

6、具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

1、激发学生的学习兴趣和信心,引发学生的学习热情。

2、用类比,推广,特殊化,化归和数形结合的思想等思想方法的运用,培养学生思考问题的方式,提高数学思维能力,培育学生的探究精神。

3、以具有时代性和现实感的素材创设教学情境,加强数学活动,发展学生的应用意识。选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,以达到培养其兴趣的目的。

4、组织学生思考和探索,改进学生的学习方式。是学生养成有逻辑思维的习惯。

我现在所教的两个班的学生的学习基础不好,自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。班级存在的最大问题是学生的计算能力太差,学生不喜欢去算题,嫌麻烦,特别是遇到复杂点的计算题,学生就怕。因此在以后的教学中,重点在于培养学生的计算能力,同时要进一步提高其思维能力。在教学时要注重基础知识,争取每一堂课落实一些知识点,掌握主要的知识点。

1、激发学生的学习兴趣。由数学活动、故事等吸引学生的兴趣,树立学生的学习信心,提高学生学习的兴趣。

2、注意从实例出发,注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。

4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

5、重视数学应用意识及应用能力的培养。

高一数学教学工作计划 篇五

本节课在教材中的地位和作用:《不等式的基本性质》,对即将要学习的一元一次不等式的解法乃至高中的不等式的运用都是非常重要的基础。本节内容掌握的好坏,将直接影响到后面的教学内容。而对于不等式的基本性质1和2,相信绝大部分的学生都不会有很大困难,而不等式的基本性质3,通过对以往学生的了解,发现很多学生会忘记分正负两种情况,因此在本节新课教学中,我采用了将不等式未知的性质与等式已知的性质进行类比教学,让学生自己去发现验证不等式的性质。

(一)知识与技能

1.掌握不等式的三条基本性质。

2.运用不等式的基本性质对不等式进行变形。

(二)过程与方法

1.通过等式的性质,探索不等式的性质,初步体会“类比”的数学思想。

2.通过观察、猜想、验证、归纳等数学活动,经历从特殊到一般、由具体到抽象的认知过程,感受数学思考过程的条理性,发展思维能力和语言表达能力。

(三)情感态度与价值观

通过探究不等式基本性质的活动,培养学生合作交流的意识和大胆猜想,乐于探究的良好思维品质。

教学重点: 探索不等式的三条基本性质并能正确运用它们将不等式变形。

教学难点: 不等式基本性质3的探索与运用。

自主探究——合作交流

情景引入:1.举例说明什么是不等式?

2.判断下列各式是否成立?并说明理由。

( 1 )若x-4=12, 则x=16()

( 2 )若3x=12, 则 x=4()

( 3 )若x-4>12 则 x>16()

( 4 )若3x>12则 x>4()

教师导语:当我们开始研究不等式的时候,自然会联想到它是否与等式有相类似的性质。这节课我们就通过类比来探究不等式的基本性质。

温故知新

问题1.由等式性质1你能猜想一下不等式具有什么样的性质吗?

等式性质1:等式两边都加上或减去同一个数(或同一个整式),所得结果仍是不等式。

估计学生会猜:不等式两边都加上或减去同一个数(或同一个整式),所得结果仍是不等式。教师引导:“=”没有方向性,所以可以说所得结果仍是等式,而不等号:“>,<,≥,≤”具有方向性,我们应该重点研究它在方向上的变化。

问题2.你能通过实验、猜想,得出进一步的结论吗?

同桌同学通过实例验证得出结论,师生共同总结不等式性质1。

问题3.你能由等式性质2进一步猜想不等式还具有什么性质吗?

等式性质2:等式两边都乘或除以同一个数(除数不能是0),等式依然成立。

估计学生会猜:不等式两边都乘或除以同一个数(除数不能是0),不等号的方向不变。

你能和小伙伴一起来验证你们的猜想吗?(教师鼓励学生实践是检验真理的唯一标准。)

学生在小组内合作交流,发现了在不等式两边都乘或除以同一个数时,不等号的方向会出现两种情况。教师进一步引导学生通过分析、比较探索规律,从而形成共识,归纳概括出不等式性质2和3。

问题4.在不等式两边都乘0会出现什么情况?

问题5.如果a、b、c表示任意数,且a

学生思考,独立总结异同点。

综合训练:你能运用不等式的基本性质解决问题吗?

1、课本62页例3

教师引导学生观察每个问题是由a>b经过怎样的变形得到的,应该应用不等式的哪条基本性质。由学生思考后口答。

2、你认为在运用不等式的基本性质时哪一条性质最容易出错,应该怎样记住?

3.小明的困惑:

小明用不等式的基本性质将不等式m>n进行变形,两边都乘以4,4m>4n,两边都减去4m, 0>4n-4m,即0>4(n-m),两边都除以(n-m),得0>4,0怎么会大于4呢?

小明可糊涂了……聪明的同学,你能告诉小军他究竟错在什么地方吗?同桌讨论。

4.火眼金睛

①a>2, 则3a___2a

②2a>3a,则 a ___ 0

课堂小结:

这节课你有哪些收获?有何体会?你认为自己的表现如何?教师引导学生回顾、思考、交流。

思考题:你来决策

咱们班的王帅同学准备在五、一期间和他的爸爸、妈妈外出旅游。青年旅行社的标准为:大人全价,小孩半价;方正旅行社的标准为:大人、小孩一律八折。若两家旅行社的基本价一样,你能帮王帅同学考虑一下选择哪家旅行社更合算吗?

高一数学教学工作计划 篇六

使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。

1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

(一)情意目标

(1)通过分析问题的方法的教学,培养学生的学习的兴趣。

(2)提供生活背景,通过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。(3)在探究函数、等差数列、等比数列的性质,体验获得数学规律的艰辛和乐趣,在分组 研究合作学习中学会交流、相互评价,提高学生的合作意识

(4)基于情意目标,调控教学流程,坚定学习信念和学习信心。

(5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。

(6)让学生体验“发现——挫折——矛盾——顿悟——新的发现”这一科学发现历程法。

(二)能力要求 培养学生记忆能力。

(1)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。

(3)通过揭示立体集合、函数、数列有关概念、公式和图形的对应关系,培养记忆能力。

2、培养学生的运算能力。

(1)通过概率的训练,培养学生的运算能力。

(2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。

(3)通过函数、数列的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。

(4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的渗透和迁移。

(5)利用数形结合,另辟蹊径,提高学生运算能力。

高一数学教学工作计划【精简6篇】

手机扫码分享

Top