化学工程新进展及其在石化工业中的应用 篇一
随着科技的发展和人们对环境保护意识的增强,化学工程领域也在不断取得新的进展。这些新进展不仅提升了石化工业的生产效率和产品质量,还有效减少了对环境的污染。本文将介绍一些化学工程的新进展,并探讨它们在石化工业中的应用。
首先,新型催化剂的研发是化学工程领域的重要进展之一。催化剂在石化工业中起着至关重要的作用,它们可以加速化学反应速度,提高反应的选择性和产率。近年来,研究人员通过改变催化剂的结构和组成,开发出了许多高效、高选择性的催化剂。例如,金属有机骨架材料(MOFs)作为一种新型催化剂,具有高比表面积和可调控的孔隙结构,被广泛应用于石化工业中的催化反应。MOFs可以提供更多的催化活性位点,提高反应速率和选择性,从而降低了石化过程中的能耗和废物产生。
其次,膜分离技术在石化工业中的应用也取得了显著进展。膜分离技术可以通过选择性地透过某些分子或离子来实现分离和纯化。传统的分离方法如蒸馏和萃取常常耗费大量的能量和化学品,而膜分离技术具有节能、环保的特点。近年来,研究人员开发出了许多高性能的膜材料,如聚合物膜、陶瓷膜和金属有机骨架膜等,用于石化工业中的气体分离、液体分离和离子分离等过程。这些膜材料具有较高的选择性和通量,可以实现高效的分离纯化,降低了石化工业中的能耗和污染物排放。
此外,过程模拟和优化技术在石化工业中的应用也愈发广泛。过程模拟和优化可以通过建立数学模型和使用优化算法,实现对化工过程的精确描述和优化设计。这种技术可以帮助工程师们更好地理解和控制化学反应和分离过程,提高生产效率和产品质量。例如,通过模拟和优化技术,可以确定最佳的工艺参数和操作条件,以最大程度地提高产率和降低废物产生。同时,过程模拟和优化还可以辅助新工艺的开发和改进,加速新技术的推广应用。
综上所述,化学工程的新进展为石化工业带来了许多机遇和挑战。新型催化剂、膜分离技术和过程模拟优化技术的应用,使石化工业能够更加高效、环保地生产化学品和能源。然而,我们仍然需要不断地研究和创新,以应对日益严峻的环境和能源问题,推动化学工程领域的可持续发展。
化学工程新进展及其在石化工业中的应用 篇二
随着社会的进步和科技的发展,化学工程领域也在不断取得新的进展。这些新进展不仅为石化工业带来了更新的技术和工艺,还为环境保护和资源利用提供了更好的解决方案。本文将介绍一些化学工程的新进展,并探讨它们在石化工业中的应用。
首先,新型催化剂的研发是化学工程领域的重要进展之一。催化剂在石化工业中起着至关重要的作用,它们可以加速化学反应速度,提高反应的选择性和产率。近年来,研究人员通过改变催化剂的结构和组成,开发出了许多高效、高选择性的催化剂。例如,金属有机骨架材料(MOFs)作为一种新型催化剂,具有高比表面积和可调控的孔隙结构,被广泛应用于石化工业中的催化反应。MOFs可以提供更多的催化活性位点,提高反应速率和选择性,从而降低了石化过程中的能耗和废物产生。
其次,膜分离技术在石化工业中的应用也取得了显著进展。膜分离技术可以通过选择性地透过某些分子或离子来实现分离和纯化。传统的分离方法如蒸馏和萃取常常耗费大量的能量和化学品,而膜分离技术具有节能、环保的特点。近年来,研究人员开发出了许多高性能的膜材料,如聚合物膜、陶瓷膜和金属有机骨架膜等,用于石化工业中的气体分离、液体分离和离子分离等过程。这些膜材料具有较高的选择性和通量,可以实现高效的分离纯化,降低了石化工业中的能耗和污染物排放。
此外,过程模拟和优化技术在石化工业中的应用也愈发广泛。过程模拟和优化可以通过建立数学模型和使用优化算法,实现对化工过程的精确描述和优化设计。这种技术可以帮助工程师们更好地理解和控制化学反应和分离过程,提高生产效率和产品质量。例如,通过模拟和优化技术,可以确定最佳的工艺参数和操作条件,以最大程度地提高产率和降低废物产生。同时,过程模拟和优化还可以辅助新工艺的开发和改进,加速新技术的推广应用。
综上所述,化学工程的新进展为石化工业带来了许多机遇和挑战。新型催化剂、膜分离技术和过程模拟优化技术的应用,使石化工业能够更加高效、环保地生产化学品和能源。然而,我们仍然需要不断地研究和创新,以应对日益严峻的环境和能源问题,推动化学工程领域的可持续发展。
化学工程新进展及其在石化工业中的应用 篇三
摘要:热电池作为国防科技工业领域的一种主要化学电源,是现代化武器和应急系统的理想电源。随着国防科技与各类武器系统的发展,对热电池的使用环境温度要求越来越高,很多情况要求热电池在温度大于300℃,甚至达到400℃及以上的环境中工作。本文通过对三种耐高温胶粘剂在热电池高温环境下的应用研究,模拟在高温环境下对热电池的导线连接及焊点保护和连接处电池的绝缘性,对比三种胶粘剂的在高温环境下的外观变化及宏观组织结构变形,分别检测三种胶粘剂在高温环境下自身的绝缘性能变化,讨论是否满足在热电池高温环境下应用的绝缘性要求。为热电池在高温环境下的导线连接及连接焊点保护和绝缘性要求寻找合适的胶粘剂。
关键词:化学工程、分离体系、数据驱动
一、前言
传统化学工程的分支学科,如分离工程、反应工程、传递过程、系统工程等,近年都有很大发展。它们与石化工业某些过程相结合,产生了一些新的过程和技术,提出了一些有希望的发展方向。另外,近年来在某些分支学科的结合点上,产生了一些化学工程新的生长点。它们对今后的炼油或石化工业可能有更大的影响。本文对以上的一些发展动态作了简要的介绍。
二、化学工程近期几个重要发展方向
1、反应过程与分离过程的结合这里指的是在一个设备中同时完成反应和分离两个过程。目前最成功的是由甲醇与异丁烯混合物合成甲基叔丁基醚,反应产物生成两个共沸物,分离比较困难。当采用了一个置有催化剂的反应蒸馏塔,便可取代原有的两个多管式固定床反应器、两个蒸馏塔和一个甲醇水洗塔等5个设备。使甲醇的转化率不受平衡转化率的限制,在蒸馏过程中也避免出现共沸物,反应热可供蒸馏使用,大大节省了投资和能耗。对酷化、醚化、烃化、水合等过程,只要反应条件和分离条件比较接近,都有可能采用反应蒸馏。近期有希望工业化的反应与分离结合的过程还有反应萃取、反应吸附、反应结晶等。尤以膜反应器最受关注。它是反应与膜分离结合的设备,最适用于各类可逆反应和反应产物对反应有抑制作用的过程。
2、多个反应过程的结合。把从原料转化为产品所需进行的多个反应在一个反应器中完成。为此需采用多种催化剂或多作用催化剂。
3、放热反应和吸热反应相结合。例如丁烷脱氢制丁烯为一强加热反应,要求反应温度较高。若加入空气进行部分氧化脱氢,氧和氢结合是强放热反应,使总的放热反应可在较低温度下进行。
3、多个分离过程的结合。开发此过程的目的是强化分离效果,增加回收率、节约能耗。近年来研究较多且实用前景较好的过程有:渗透蒸发,即膜分离与蒸发过程相结合;膜萃取,即膜分离与萃取过程相结合;支撑液膜萃取即萃取与反萃取结合等一些新的分离技术都开始从研究走向实用阶段。
三、强化化学作用对分离体系中体相的影响
1、筛选分离剂使对某被分离组分有特殊的化学结合能力,增大分离因子;另一是对原分离体系加入附加组分,改变原体系的化学位,从而增大分离因子。另一类适用于萃取、吸收等使用分离剂的过程。
2、强化化学作用对相界面传质速率的影响。采用相转移催化剂(PTC)促进水相和有机相间的反应已为人所熟知。其实质是PTC可以促进反应组分通过相界面的传质速率。若两相间不发生反应,我们把这类促进通过两相界面的传质速率和选择性的物质称为相转移促进剂(PTA)。可以认为PTC也属于PTA中的一类。如用有机相萃取水相中的有机酸和酚,采用长碳链的胺为PTA,可以加快萃入有机相的速率。又如对气体分离膜,若在表层涂上一层固定液作为PTA,可以增大某组分通过的选择性和通量。又如把对被分离组分有特殊亲和力的PTA结合在相界面上,便形成各类的亲和(Affinity)分离过程。如亲和色谱、亲和吸附、亲和过滤、亲和膜分离等。已经形成强化分离过程的一个前沿研究方向。
3、优化化工动态过程。这是在计算机技术高度发展以及快速、高精度分析和监测仪器和方法产生的基础上才可能发展起来的技术。主要内容包括有以下5方面。
(1)分批操作的动态模拟和过程的优化。
(2)对开工、停工和变换操作条件时实现最优化控制。
(3)利用动态响应过程以快
速研究传质过程和测定相应的传递参数。也可以研究反应机理和测定吸附和反应动力学方程与相关的参数。各种过渡应答技术、催化反应色谱等技术都已取得广泛的应用,并取得了许多用传统定态方法不易得到的研究结果。(4)把脉冲进料的高效分析技术如色谱、电泳进行放大,发展成为高精度的制备技术。
(5)利用强制周期改变操作参数的方法强化反应和分离过程等。
四、计算机技术与石油化工相结合
计算机技术在化学工程发展中占重要地位。因此,计算机技术与石油化工结合将有助于精确连续化稳定发展。
1、运行优化与产品设计
在历史数据和多元统计方法的操作条件优化基础上,进一步用于产品的优化设计。还可以在炼化行业中进行一些相关的应用,例如Sebzalli利用PCA对炼油产催化裂化过程操作空间进行识别,而Chen利用模糊c-均值聚类方法,提出用于开发期望的产品操作策略。
2、过程监测与故障诊断
过程监测与故障诊断主要任务是对过程运行状态进行实时监控,并对系统进行分析异常,保证能及时发现运行过程故障,并在事故发生前采取有效的控制措施避免事故,以保证运行过程的安全与平稳。目前,基于数据的统计过程中控制在石化行业已得到普遍的关注,其方法也从以单一的变量统计过程控制向以主元分析为主的多变量统计技术转变。基于多变量统计技术应用于石化工业过程的监控始于20世纪80年代,其相关的多变量统计在石油化工方面的报道文献也较多。基于多变量的数据驱动的过程监测与控制也常被称为多变量过程控制(MPC)或多变量统计过程控制(MSPC)。其采用的方法也主要是PCA,PLS,基于支持向量机以及它们与其他方法的混合算法。
3、产品质量预测与控制
利用数据驱动方法进行预测离线或在线的产品质量,以克服没有在线仪表的困难,也不会受在线仪表价格昂贵的限制、避免了维护费用高的缺点。也可以进一步应用于控制回路用来完成产品质量的调控。这种数据驱动方法主要是通过对目标控制变量建立软测量模型来实现的。PCA、PLS、SVM是实现数据驱动的软测量模型的主要方法,人工智能算法(模糊神经系统、神经网络等)及其混合算法。在许多资料中都有对软测量模型方法及应用的综合报道。在石化行业中,一些典型的应用如:用来生产乙烯的在线质量监测,基于PLS的软测量模型,检验在线气相色谱仪的性能。Fortuna等人开发了一个基于多层感知器的复杂软测量模型,模型采用三层神经网络,取得了较好的在线预测功能,用于预测精馏塔汽油浓度。Bakhtadze等建立了原油精炼过程的产品软测量模型,该模型应用于缺少实验数据情况下的软测量建模,这种模型是将Takagi-Sugeno模糊模型和基于过程知识的相联搜索算法相结合。
五、结语
在21世纪,化学工程将发挥非常大的作用,假如我们可以及时抓住机遇,那么我们就有可能在开辟化学工程发展的新的阶段中,形成中国化学工程的特色和优势,为人类的可持续发展做出贡献。化学工程是一门传统的学科,但必将焕发出新的生机!其应用领域将扩展到所有涉及物质转化的领域,包括系统工程也包括产品工程,其学科基础将向高层次发展,理论和实验研究都将关注复杂体系的多尺度结构,计算能力也将空前提升。
参考文献
[1]袁乃驹 丁富新 张春洁:《膜反应器及其在生物工程中的应用》,《高校化学工程学报》1991年1期;
[2]赵玉潮 张好翠 沈佳妮 陈光文 袁权:《微化工技术在化学反应中的应用进展》,《中国科技论文在线》,2008年3期
[3]徐斌 宋育贤:《化学工程技术的研究进展》,《国外油田工程》,2001年4期
[4]袁乃驹:《化学工程发展方向》,《现代化工》,1993年6期