初一数学的小论文 篇一
如何培养初一学生的数学兴趣
引言:数学作为一门基础学科,对学生的综合素质培养具有重要作用。然而,在初一阶段,许多学生对数学产生了抵触情绪,甚至认为数学是一门难以理解和应用的学科。因此,如何培养初一学生的数学兴趣成为了一个值得思考和研究的问题。
一、创设情境,增加实践性
在初一数学教学中,我们可以通过创设情境,将抽象的数学知识与实际生活相结合,使学生能够感受到数学在实际生活中的应用。例如,在解决问题时,可以引入一些实际生活中的案例,让学生运用所学的数学知识进行分析和解决,这样能够增加学生的学习兴趣和动力。
二、启发思维,强化逻辑性
在初一数学教学中,我们应该注重培养学生的逻辑思维能力。通过让学生进行一些有趣的数学推理、证明和解题活动,可以帮助学生发展逻辑思维,提高解决问题的能力。例如,可以引导学生进行数学游戏和数学竞赛,让学生在竞争中感受到数学的魅力和乐趣。
三、关注个体,因材施教
在初一数学教学中,我们应该注重个体差异,因材施教。每个学生的数学水平和兴趣爱好都不同,我们应该根据学生的实际情况进行差异化教学。对于那些对数学较为感兴趣的学生,可以提供更高层次的数学知识和挑战;对于那些对数学不太感兴趣的学生,可以采取一些激发兴趣的方法,例如通过数学游戏、数学趣味故事等来增加学生对数学的兴趣。
结论:培养初一学生的数学兴趣是一个需要我们共同努力的任务。通过创设情境,增加实践性;启发思维,强化逻辑性;关注个体,因材施教,我们可以有效提高学生的数学兴趣,使其在学习数学的过程中更加主动积极。
初一数学的小论文 篇二
如何提高初一学生的数学学习能力
引言:在初一阶段,学生正处于数学学习的关键时期,他们的数学学习能力的提高对于未来的学习和发展具有重要意义。然而,由于各种原因,初一学生的数学学习能力普遍较弱。因此,如何提高初一学生的数学学习能力成为了一项紧迫的任务。
一、建立扎实的基础知识
初一数学是数学学习的基础,因此,建立扎实的基础知识是提高初一学生数学学习能力的关键。教师应该注重对基础知识的讲解和巩固,帮助学生掌握基本的数学概念、运算规则和解题方法。同时,学生也应该注重课后的复习和巩固,通过做题巩固所学的知识,提高数学学习的效果。
二、培养良好的学习习惯
良好的学习习惯对于初一学生的数学学习能力的提高至关重要。学生应该养成按时完成作业、积极参与课堂讨论、主动解决问题的习惯。此外,学生还应该合理安排学习时间,避免学习过程中的拖延和浪费。通过培养良好的学习习惯,学生可以提高学习效率,提升数学学习的能力。
三、注重实践,提高应用能力
数学学习不仅仅是理论知识的学习,更重要的是能够将所学的知识应用于实际问题的解决。因此,在初一数学教学中,我们应该注重培养学生的实践能力。通过引入一些实际生活中的问题,让学生运用所学的数学知识进行分析和解决,帮助学生提高数学应用的能力。
结论:提高初一学生的数学学习能力需要教师和学生共同努力。建立扎实的基础知识,培养良好的学习习惯,注重实践,提高应用能力,这些措施都可以有效提升初一学生的数学学习能力,使其在数学学习中取得更好的成绩和进步。
初一数学的小论文 篇三
关于初一数学的小论文
初一数学小论文篇一:
生活中的数学
什么是数学?百科全书上是这么定义的,数学是研究数量、结构、变化以及空间模型等概念的一门学科。透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。可能你仍然不明白何为数学。通俗的说,数学就是一门关于计算的课程。
那么,数学到底体现在哪里呢?事实上,我们的生活中,数学无处不在。精密的数学竟然能跟拿袜子扯上边。关于拿多少只袜子能配成对的问题,答案并非两只。我敢担保在冬季黑蒙蒙的早上,如果我从装着黑色和蓝色袜子的抽屉里拿出两只,它们肯定无法配成一对。但是如果我从抽屉里拿出3只袜子,我敢说肯定会有一双颜色是一样的。不管成对的那双袜子是黑色还是蓝色,最终都会有一双颜色一样。当然只有当袜子是两种颜色时,这种情况才成立。如果抽屉里有3种颜色的袜子,例如蓝色、黑色和白色,你要想拿出一双颜色一样的,则至少要取出4只袜子。如果抽屉里有10种不同颜色的袜子,你就必须拿出11只。根据上述情况总结出来的数学规则是:如果你有N种类型的袜子,你必须取出N+1只,才能确保有一双完全一样。
说完拿袜子,让我们讨论一下燃烧绳子的方法。一根绳子,从一端开始燃烧,烧完需要1小时。现在你需要在不看表的情况下,仅借助这根绳子和一盒火柴测量出半小时的时间。你可能认为这很容易,你只要在绳子中间做个标记,然后测量出这根绳子燃烧完一半所用的时间就行了。然而不幸的是,这根绳子并不均匀,有些地方比较粗,有些地方却很细,因此这根绳子不同地方的燃烧率不同。也许其中一半绳子燃烧完仅需5分钟,而另一半燃烧完却需要55分钟。面对这种情况,似乎想利用上面的绳子准确测出30分钟时间根本不可能,但是事实并非如此,大家可以利用一种创新方法解决上述问题,这种方法是同时从绳子两头点火。绳子燃烧完所用的时间一定是30分钟。
同样类似的问题还有火车相向而行问题。两列火车沿相同轨道相向而行,每列火车的时速都是50英里。两车相距100英里时,一只苍蝇以每小时60英里的速度从火车A开始向火车B方向飞行。它与火车B相遇后,马上掉头向火车A飞行,如此反复,直到两列火车相撞在一起,把这只苍蝇压得粉碎。苍蝇在被压碎前一共飞行了多远?我们知道两车相距100英里,每列车的时速都是50英里。这说明每列车行驶50英里,即一小时后两车相撞。在火车出发到相撞的这一小时,苍蝇一直以每小时60英里的速度飞行,因此在两车相撞时,苍蝇飞行了60英里。不管苍蝇是沿直线飞行,还是沿“Z”形线路飞行,或者在空中翻滚着飞行,其结果都一样。
日常生活中,你一定投掷过硬币。可是,你知道吗,掷硬币并非最公平的。人们认为这种方法对当事人双方都很公平。因为他们认为钱币落下后正面朝上和反面朝上的概率都一样,都是50%。但是有趣的是,这种非常受欢迎的想法并不正确。首先,虽然硬币落地时立在地上的可能性非常小,但是这种可能性是存在的。其次,即使我们排除了这种很小的可能性,测试结果也显示,如果你按常规方法抛硬币,即用大拇指轻弹,开始抛时硬币朝上的一面在落地时仍朝上的`可能性大约是51%。之所以会发生上述情况,是因为在用大拇指轻弹时,有些时候钱币不会发生翻转,它只会像一个颤抖的飞碟那样上升,然后下降。如果下次你要选择,你应该先看一看哪面朝上,这样你猜对的概率要高一些。但是如果那个人是握起钱币,又把拳头调了一个个儿,那么,你就应该选择与开始时相反的一面。
总之,数学在生活中无处不在。
生活中处处有数学,生活中处处藏着数学的奥妙,我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活
运用,很少想到在实际生活中学习、掌握数学知识。从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。
数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。
生活中处处有数学,比如说抽屉原理,“任意367个人中,必有生日相同的人。”“从任意5双手套中任取6只,其中至少有2只恰为一双手套。”“从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同。”......
大家都会认为上面所述结论是正确的。这些结论是依据什么原理得出的呢?这个原理叫做抽屉原理。它的内容可以用形象的语言表述为:
“把m个东西任意分放进n个空抽屉里(m>n),那么一定有一个抽屉中放进了至少2个东西。”
在上面的第一个结论中,由于一年最多有366天,因此在367人中至少有2人出生在同月同日。这相当于把367个东西放入366个抽屉,至少有2个东西在同一抽屉里。在第二个结论中,不妨想象将5双手套分别编号,即号码为1,2,...,5的手套各有两只,同号的两只是一双。任取6只手套,它们的编号至多有5种,因此其中至少有两只的号码相同。这相当于把6个东西放入5个抽屉,至少有2个东西在同一抽屉里。
抽屉原理的一种更一般的表述为:
“把多于kn个东西任意分放进n个空抽屉(k是正整数),那么一定有一个抽屉中放进了至少k+1个东西。”
利用上述原理容易证明:“任意7个整数中,至少有3个数的两两之差是3的倍数。”因为任一整数除以3时余数只有0、1、2三种可能,所以7个整数中至少有3个数除以3所得余数相同,即它们两两之差是3的倍数。
如果问题所讨论的对象有无限多个,抽屉原理还有另一种表述:
“把无限多个东西任意分放进n个空抽屉(n是自然数),那么一定有一个抽屉中放进了无限多个东西。”
抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。
1958年6/7月号的《美国数学月刊》上有这样一道题目:
“证明在任意6个人的集会上,或者有3个人以前彼此相识,或者有三个人以前彼此不相识。”
这个问题可以用如下方法简单明了地证出:
在平面上用6个点A、B、C、D、E、F分别代表参加集会的任意6个人。如果两人以前彼此认识,那么就在代表他们的两点间连成一条红线;否则连一条蓝线。考虑A点与其余各点间的5条连线AB,AC,...,AF,它们的颜色不超过2种。根据抽屉原理可知其中至少有3条连线同色,不妨设AB,AC,AD同为红色。如果BC,BD,CD3条连线中有一条(不妨设为BC)也为红色,那么三角形ABC即一个红色三角形,A、B、C代表的3个人以前彼此相
识:如果BC、BD、CD3条连线全为蓝色,那么三角形BCD即一个蓝色三角形,B、C、D代表的3个人以前彼此不相识。不论哪种情形发生,都符合问题的结论。
六人集会问题是组合数学中著名的拉姆塞定理的一个最简单的特例,这个简单问题的证明思想可用来得出另外一些深入的结论。这些结论构成了组合数学中的重要内容-----拉姆塞理论。从六人集会问题的证明中,我们又一次看到了抽屉原理的应用。
生活中处处有数学,比如说一元一次方程,通常形式是kx+b=0(k,b为常数,且k≠0)。一元一次方程属于整式方程,即方程两边都是整式。一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0。我们将ax+b=0(其中x是未知数,a、b是已知数,并且a≠0)叫一元一次方程的标准形式。这里a是未知数的系数,b是常数,x的次数是1。ax=b
1,当a≠0,b=0时,方程有唯一解,x=0;
2,当a≠0,b≠0时,方程有唯一解,x=b/a。
3,当a=0,b=0时,方程有无数解
4,当a=0,b≠0时,方程无解
例:(3x+1)/2-2=(3x-2)/10-(2x+3)/5
5(3x+1)-10×2=(3x-2)-2(2x+3)
15x+5-20=3x-2-4x-6
15x-3x+4x=-2-6-5+20
合并同类项!!!!!!!
16x=7
x=7/16
示例:小明把压岁钱按定期一年存入银行。当时一年期定期存款的年利率为1.98%,利息税的税率为20%。到期支取时,扣除利息税后小明实得本利和为507.92元。问小明存入银行的压岁钱有多少元?解:设小明存入银行的压岁钱有x元,则到期支取时,利息为1.98%x元,应缴利息税为
1.98%x×20%=0.00396x元,
x+0.0198x-0.
00396x=507.921.01584x=507.92
∴x=500
答:小明存入银行的压岁钱有500元。
生活中处处有数学,还有统计图:第五次人口普查。
数学,就像一座高峰,直插云霄,刚刚开始攀登时,感觉很轻松,但我们爬得越高,山峰就变得越陡,让人感到恐惧,这时候,只有真正喜爱数学的人才会有勇气继续攀登下去,所以,站在数学的高峰上的人,都是发自内心喜欢数学的。记住,站在峰脚的人是望不到峰顶的。
初一数学小论文篇二:
“对我来说什么都可以变成数学。”数学家笛卡儿曾这样说过。“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用到数学。”数学与我们的生活息息相关,数学的身影无处不在。
初一年级的几何是较复杂的一种题目,随常常搞得脑袋一团浆糊,但当解开一题的喜悦感也是无法形容的。全等三角形的解题方法算是简单的,但同解其他几何图形一样,也需要认真的读题目,用所给的条件延伸出另一个或几个关键的条件用来解题。
全等三角形的解题方法很简单,用于普通三角形的有4种,分别是靠两个三角形的边角边、角边角、角角边或边边边的相等而全等。当然,三角形中也有特例,比如直角三角形,他拥有一种他自己的解题方法——“HL”。“H”是指直角三角形的斜边,“L”是指直角三角形的一条直角边。如此,一条直角边和斜边对应相等的两个直角三角形全等。直角三角形也不是只可以用那一种方法,用于不同三角形的方法也可以用于直角三角形的。那让我们先来热个身吧,先来看下边一道题:(此图为自作)
如图,已知AC丄BC,AD丄BD,AD=BC,CE丄AB,DF丄AB,垂足分别是E、F。证明:CE=DF.
题目中已经告诉我们两个垂直条件,AC丄BC,BD丄AD,所以△ACB与△BDA为直角三角形。再仔细看看图就能发现这两个Rt△有一条公共边AB,再加上已知条件AD=BC,就可以证全等了:在Rt△ACB与Rt△BDA中
AD=BC
AB=BA
所以Rt△ACB≌Rt△BDA(HL)
因为题目所让我们求的是CE=DF,为了求证这个就必须求△ACE全等于△DFB,首先题目告诉我们了,CE丄AB,DF丄AB,,所以这又是两个直角三角。上面我们已经证明了一个全等,就可以利用上面全等的条件了,因为Rt△ACB≌Rt△BDA,所以AC=BD.又因为AB=BA,且EF为公共边,所以AE=FB,这样就又可以用HL来求这两个图形的全等了:在Rt△ACE与在Rt△BDF中
CA=DB
AE=FB
所以Rt△ACE≌Rt△BDF(HL)
所以CE=DF(全等三角形的对应边相等)
就这样,一道全等的几何体就完成了。其实只要认认真真的读题,将几何的基本概念掌握清楚,还是可以很容易就做出来的,可以在做题目的时候,在图上标标画画,这样更有助于理解。遇到很长的题目也不要害怕一字一字的慢慢读,不要着急,静下心来,利用自己所学过的知识,懂得变通,灵活一些,你会发现数学还是很有趣的!