生物技术发展论文 篇一
标题:生物技术在医学领域的应用与前景
随着科学技术的不断进步,生物技术在医学领域的应用也日益广泛。本文将从基因工程、细胞治疗以及药物研发等方面探讨生物技术在医学领域的应用与前景。
首先,基因工程作为生物技术的一大领域,已经在医学领域取得了重要的突破。通过基因工程技术,科学家们能够对某些疾病相关基因进行精确的编辑和修复,从而实现疾病的基因治疗。例如,利用CRISPR-Cas9系统,科学家们可以精确地编辑人类基因组,纠正某些遗传性疾病的基因突变。这种基因治疗的突破为许多无法通过传统疗法治疗的疾病患者带来了新的希望。
其次,细胞治疗也是生物技术在医学领域的重要应用之一。细胞治疗是指利用人体自身的干细胞或修饰细胞来治疗一些难以治愈的疾病。通过生物技术的手段,科学家们可以将干细胞分化为特定类型的细胞,比如心脏细胞、神经细胞等,然后将其移植到患者体内进行治疗。这种细胞治疗的方法已经被成功应用于一些疾病的治疗,比如心脏病、帕金森病等。随着技术的不断发展,细胞治疗有望在更多疾病的治疗中发挥重要作用。
最后,生物技术在药物研发方面也有着巨大的潜力。传统的药物研发过程通常需要耗费大量的时间和资源,而且往往会出现一些副作用。然而,生物技术的出现使得药物研发变得更加高效和精确。例如,利用基因工程技术,科学家们可以将人体需要的特定蛋白质编码基因导入到细菌或其他生物体中,从而实现大规模生产这些蛋白质。这种重组蛋白质的生产方式不仅提高了药物的纯度和效力,还减少了对动物的依赖。此外,生物技术还可以帮助科学家们更好地理解药物与人体之间的相互作用,从而提高药物的疗效和安全性。
综上所述,生物技术在医学领域的应用前景广阔。基因工程、细胞治疗以及药物研发等方面的突破为医学研究和临床治疗带来了重要的进展。随着技术的不断发展和完善,相信生物技术将在未来发挥更加重要的作用,为人类健康事业做出更大的贡献。
生物技术发展论文 篇二
标题:生物技术在农业领域的应用与挑战
随着人口的不断增长和资源的日益稀缺,农业领域面临着巨大的挑战。而生物技术作为一种新兴的技术手段,为农业的可持续发展提供了新的机遇。本文将从转基因作物、育种技术以及农药和农业生态环境等方面探讨生物技术在农业领域的应用与挑战。
首先,转基因作物是生物技术在农业领域的重要应用之一。通过转基因技术,科学家们可以将其他物种的有益基因导入到农作物中,从而赋予其更多的抗病虫害能力、耐逆性和优质性等特点。这种转基因作物的种植不仅可以提高农作物的产量和质量,还可以减少对农药的依赖,减轻环境污染。然而,转基因作物也面临着一些争议和挑战,比如对人类健康和生态环境的潜在风险。因此,科学家们需要加强对转基因作物的研究和监管,确保其安全性和可持续性。
其次,育种技术是生物技术在农业领域的另一个重要应用。传统的育种方法通常需要耗费大量的时间和资源,而且往往会受到自然交配的限制。而生物技术的出现使得育种变得更加高效和精确。例如,利用基因编辑技术,科学家们可以精确地改变植物的基因组,实现特定性状的选择和改良。这种基因编辑技术的出现为育种工作提供了新的思路和方法,有望加速育种进程,提高新品种的培育效率。
最后,农药和农业生态环境也是生物技术在农业领域面临的重要挑战之一。传统的农药使用往往会对环境造成一定的污染和损害。而生物技术可以帮助科学家们研发更加安全和环保的农药,从而减少对环境的影响。此外,生物技术还可以帮助科学家们改善农业生态系统,促进有益生物的保护和利用,提高农作物的自然抗性和适应性。
综上所述,生物技术在农业领域的应用为农业的可持续发展带来了新的机遇和挑战。转基因作物、育种技术以及农药和农业生态环境等方面的突破为农业生产提供了新的思路和技术手段。然而,生物技术的应用也面临着一些争议和挑战,需要科学家们加强研究和监管,确保其安全性和可持续性。只有在科学合理的前提下,生物技术才能更好地为农业的可持续发展做出贡献。
生物技术发展论文 篇三
生物技术发展论文
生物技术不完全是一门新兴学科,它包括传统生物技术和现代生物技术两部分。传统生物技术是指旧有的制造酱、醋、酒、面包、奶酪及其他食品的传统工艺。现代生物技术则是指70年代末80年代初发展起来的,以现代生物学研究成果为基础,以基因工程为核心的新兴学科。当前所称的生物技术基本上都是指现代生物技术。生物技术是指:应用生物或来自生物体的物质制造或改进一种商品的技术,其还包括改良有重要经济价值的植物与动物和利用微生物改良环境的技术。
当今世界各国综合国力的竞争,实际上是现代科学技术的竞争。现代生物技术被世界各国视为一种二十一世纪高新技术。我国早在1986年初制定的《高技术研究发展计划纲要》中就将生物技术列于航天技术、信息技术、激光技术、自动化技术、新能源技术和新材料技术等高技术的首位。第一次技术革命,工业革命,解放人的双手;第二次技术革命,信息技术,扩展人的大脑;第三次技术革命,生物技术,改造生命本身。现代生物技术之所以会被世界各国如此重视和关注,是因为它是解决人类所面临的诸如食品短缺问题、健康问题、环境问题及资源问题的关键性技术;还因为它与理、工、医、农等科技的发展,与伦理、道德法律等社会问题都有着密切的关系,对国计民生将产生重大的影响。现代生物技术的主要内容包括:基因工程、细胞工程、发酵工程、蛋白质(酶)工程,此外还有基因诊断与基因治疗技术、克隆动物技术、生物芯片技术、生物材料技术、生物能源技术、利用生物降解环境中有毒有害化合物、生物冶金、生物信息等技术。直接相关联的学科:分子生物学、微生物学、生物化学、遗传学、细胞生物学、化学工程学、医药学等。对人类和社会生活各方面影响最大的生物技术领域:农业生物技术、医药生物技术、环境生物技术、海洋生物技术。
现代生物技术使用了大量的现代化高精尖仪器。这些仪器全部都是由微机控制的、全自动化的。这就是现代微电子学和计算机技术与生物技术的结合和渗透。如超速离心机、电子显微镜、高效液相色谱、DNA合成仪、DNA序列分析仪等。没有这些结合和渗透,生物技术的研究就不可能深入到分子水平,也就不会有今天的现代生物技术。
现代生物技术的主要内容:疾病治疗--用于控制人类疾病的医药产品,包括抗生素、生物药品、基因治疗。快速而准确的诊断--临床检测与诊断,食品、环境与农业检测。农业、林业与园艺--新的`农作物或动物的基因改造、保存,肥料,杀虫剂:如生物农药、生物肥料等。食品--扩大食品、饮料及营养素的来源:如单细胞蛋白等。环境--废物处理、生物净化及新能源。化学品--酶、DNA/RNA及特殊化学品、金属。设备--由生物技术生产的金属、生物反应器、计算机芯片及生物技术使用的设备等。
现代生物技术的发展:
(1)提高农作物产量及其品质。培育抗逆的作物优良品系。通过基因工程技术对生物进行基因转移,使生物体获得新的优良品性,称之为转基因技术。通过转基因技术获得的生物体称为转基因生物。至1994年全世界批准进行田间试验的转基因植物已达1467例,涉及的作物种类包括马铃薯、油菜、烟草、玉米、水稻、番茄、甜菜、棉花、大豆等。转基因性能包括抗除草剂、抗病毒、抗盐碱、抗旱、抗虫、抗病以及作物品质改良等。例如我国首创的两系法水稻杂交优势利用,已先培育出了具实用价值的梗型光敏核不育系N5047S、7001S等新品系,一般增产达10%以上,高产可达40%。国家杂交水稻工程技术中心袁隆平教授,1997年试种其培育的“超级杂交稻”3.6亩,平均亩产达884kg。1998年总理特批基金1000万元,用于支持该项研究的深化与推广。我国学者还将苏云金杆菌的Bt杀虫蛋白转入棉花,培育抗虫棉,对棉铃虫杀虫率高达80%以上。
(2)植物种苗的工厂化生产;利用细胞工程技术对优良品种进行大量的快速无性繁殖,实现工业化生产。该项技术又称植物的微繁殖技术。植物细胞具有全能性,一个植物细胞有如一株潜在的植物。利用植物的这种特性,可以从植物的根、茎、叶、果、穗、胚珠、胚乳、官或组织取得一定量的细胞,在试管中培养这些细胞,使之生长成为所谓的愈伤组织;愈伤组织具有很强的繁殖能力,可在试管内大量繁殖。
(3)提高粮食品质;生物技术除了可培育高产、抗逆、抗病虫害的新品系外,还可以培育品质好、营养价值高的作物新品系。例如美国威斯康星大学的学者将菜豆储藏蛋白基因转移到向日葵中,使用权向日葵种子含有菜豆储藏蛋白。利用转基因技术培育番茄可延缓其成熟变软,从而避免运输中的破损。大米是我们的主要粮食,含有人体自身不能合成的8种必需氨基酸,但其蛋白质含量很低。人们正试图将大豆储藏蛋白基因转移到水稻中,培育高蛋白质的水稻新品系。
(4)生物固氮;减少化肥使用量,现代农业均以化学肥料,如尿素、硫酸铵作为氮肥的主要来源。化肥的使用不可避免地带来了土地的板结,肥力的下降;化肥的生产又将导致环境的污染。科学家们正在努力将具有固氮基因转移到作物根际周围的微生物体内,希望由这些微生物进行生物固氮,减少化肥的使用量。
(5)发展畜牧业生产利用转基因技术,将与动物优良品质有关的基因转移到动物体内,使获得新的品质。第一例转基因动物是1983年美国学者将大鼠的生长激素基因导入小鼠的受精卵里,现把受精卵转移到借腹怀胎的雌鼠内。生下来的小鼠因带有大鼠的生长工激素基因而使其生长速度比普通小鼠快50%,并可遗传给下一代。
(6)提高生命质量,延长人类寿命;医药生物技术是生物技术领域中最活跃,产业发展最迅速,效益最显著的领域。其投资比例及产品市场均占生物技术领域的首位。这是因为生物技术为探索妨碍人类健康的因素和提高生命质量提供了最有效的手段。生物技术在医药领域的应用涉及到新药开发、新诊断技术、预防措施及新的治疗技术。
(7)开发制造奇特而又贵重的新型药品;抗生素是人们最为熟悉、应用最为广泛的生物技术药物。目前已分离到6000多种不同的抗生素,其中
约100种被广泛地使用。每年的市场销售额约100亿美元。1977年,美国首先采用大肠杆菌生产了人类第一基因工程药物——人生长激素释放抑制激素,开辟了药物生产的新纪元。该激素可抑制生长激素、胰岛素和胰高血糖素的分泌,用来治疗肢端肥大症和急性胰腺炎。如果用常规方法生产该激素,50万头羊的下丘脑才能生产5mg,而用大肠杆菌生产,只需9L细菌发酵液。其价格降至每克300美元。由于细菌与人体在遗传体制上的差异较大,许多人类所需的蛋白质类药物用细菌生产往往是没有生物活性的。人们不得不放弃用细菌生产这种最简单的方法而另找其他方法,利用细胞培养技术或转基因动物来生产这些蛋白质药物是近几年发展起来的另一种生产技术。如转基因羊生产人凝血因子IX;转基因牛生产人;转基因猪生产人体球蛋白等。用基因工程生产的药物,除了人生长工激素释放抑制激素外,还有人胰岛素、人生长激素、人心钠素、人干扰素、肿瘤坏死因子、集落刺激因子等。目前全世界已有20多种基因工程药物面市。另外还有约400多种生物制剂正在进行临床试验,2000多种处于前期的实验室研究阶段。1987年所有上市的基因工程药品价值约5.4亿美元,到了1993年,10种主要基因工程药品的经销额已接近77亿美元。上世纪末达到100亿美元,到2003年将达到130亿美元。这清楚地表明,基因工程药物的产业前景十分光明,下个世纪整个医药工业将进行更新换代。(8)疾病的预防和诊断;传统的疫苗生产方法对某些疫苗的生产和使用,存在着免疫效果不够理想、被免疫者有被感染的风险等不足;而用基因工程生产重级疫苗可以达到安全、高效的目的。已经上市或已进入临床试验的病毒性肝炎疫苗(包括甲型和乙型肝炎等);肠道传染病疫苗(包括霍乱、痢疾等);寄生虫疫苗(包括血吸虫、疟疾等);流行性出血热疫苗、EB病毒疫苗等。1998年初,美国仪器和医药管理局(FDA)批准了首个艾滋病疫苗进入人体试验。这预示着艾滋病或许可以像乙型肝炎、脊髓灰质炎等病毒性疾病那样得到有效的预防。用基因工程技术还可生产诊断用的DNA试剂,称之为DNA探针,主要用来诊断遗传性疾病和传染性疾病。
(9)基因治疗;1990年9月,美国FDA批准了用ADA(腺苷脱氨酶基因)基因治疗严重联合型免疫缺陷病(一种单基因遗传病),并取得了较满意的结果。这标志着人类疾病基因治疗的开始。以基因工程为基础的治疗遗传疾病、肿瘤、心血管、代谢性疾病的新方法——基因治疗是21世纪的一大热点领域。基因治疗就是制备正常基因代替或校正遗传缺陷基因,或关闭、或降低、或调控异常基因的表达,而达到治疗疾病的目的。
(10)解决能源危机、治理环境污染;目前,石油和煤炭是我们生活中的主要能源。然而,这些化石能源是不可再生的,最终将枯竭。寻找新的替代能源将是人类面临的一个重大课题。生物能源将是最有希望的新能源之一,而其中又以乙醇最有希望成为新的替代能源。微生物可以利用大量的农业废弃物如杂草、木屑、植物的秸杆等纤维素或木质素类物质或其他工业废弃物作为原料。生物技术还可用来提高石油的开采率。目前,石油的一次采油,仅能开采储量的30%。二次采油需加压、注水,只能获得储量的20%。深层石油由于吸附在岩石空隙间,难以开采。加入能分解蜡质的微生物后,利用微生物分解蜡质使石油流动性增加而获取石油,称之为三次采油。从而大大提高了石油的工业储量。环境保护方面,生物法生产化学品比化学工业生产法更环保和节能。生物农药代替
化学农药,不污染环境,对人体无害。某些微生物能净化有毒的化合物,降解石油污染,清除有毒气体和恶臭物质,综合利用废水和废渣,处理有毒金属等作用,达到净化环境、保护环境、废物利用并获得新的产品的目的。
(11)制造工业原料、生产贵重金属利用微生物在生长过程中积累的代谢产物,生产食品工业原料,种类繁多;发酵技术还可用来生产化学工业原料。
现代生物技术发展趋势:基因操作技术日新月异和不断完善;基因工程药物与疫苗的研究与开发突飞猛进;转基因植物与动物技术取得重大突破;生物体基因组结构与功能研究发展迅速;基因治疗取得一定进展;蛋白质工程和生物信息学飞速发展。
现代生物技术发展史及其重要事件:1917年,KarlEreky首次使用生物技术这一名词;1943年,大规模生产青霉素;1944年,Avery等通过实验证明DNA是遗传物质;1953年,WatsonCrick阐明DNA的双螺旋结构;1961年,<生物技术和生物工程>杂志创刊;1961-1966年,破译遗传密码;1970年,分离出第一个限制性内切酶;1972年,Khorana等合成了完整的tRNA基因;1973年,Boyer和Cohen建立了DNA重组技术;1975年,Milstein建立了单克隆抗体技术;1976年,第一个DNA重组技术规则问世;1976年,DNA测序技术诞生。