高中数学教案必修一 篇一
标题:解析几何中的二维平面问题
导入:
在高中数学必修一的学习中,解析几何是一个重要的内容。解析几何是通过坐标系的建立,将几何问题转化为代数问题来解决。本篇文章将重点介绍解析几何中的二维平面问题。
主体:
1. 坐标系的建立
- 直角坐标系的建立:通过选择一个原点和两条相互垂直的坐标轴来建立直角坐标系。
- 极坐标系的建立:通过选择一个原点和一条与原点的连线,以及与该连线垂直的一条射线来建立极坐标系。
2. 直线的表示和性质
- 直线的斜截式方程:y = kx + b,其中k为直线的斜率,b为直线在y轴上的截距。
- 直线的截距式方程:x/a + y/b = 1,其中a和b分别为直线在x轴和y轴上的截距。
- 直线的点斜式方程:y - y? = k(x - x?),其中(x?, y?)为直线上的一点,k为直线的斜率。
- 相交直线的性质:两条直线相交于一点,这两条直线的斜率互为倒数。
3. 圆的表示和性质
- 圆的标准方程:(x - a)2 + (y - b)2 = r2,其中(a, b)为圆心的坐标,r为半径。
- 圆的一般方程:x2 + y2 + Dx + Ey + F = 0,其中D、E、F为常数。
- 相交圆的性质:两个圆相交于两个点,这两个点到两个圆心的距离相等。
结论:
解析几何中的二维平面问题通过建立坐标系,将几何问题转化为代数问题来解决。直线和圆是解析几何中常见的图形,它们可以通过方程来表示,并具有一些特定的性质。在解析几何的学习中,需要熟练掌握直线和圆的各种方程以及它们的性质,通过代数的方法来解决几何问题。
高中数学教案必修一 篇二
标题:函数与导数的应用
导入:
在高中数学必修一的学习中,函数与导数是一个重要的内容。函数是数学中一种重要的关系,而导数是函数的变化率的度量。本篇文章将重点介绍函数与导数在实际问题中的应用。
主体:
1. 函数的应用
- 函数建模:将实际问题抽象为函数,通过建立函数模型来描述问题。
- 函数的图像分析:通过函数的图像来了解函数的性质,如极值、单调性、奇偶性等。
- 函数的复合:将多个函数进行组合,形成新的函数,用于描述复杂的问题。
2. 导数的应用
- 函数的增减性和极值:通过导数的正负来判断函数的增减性,通过导数的零点来求函数的极值。
- 函数的最大值和最小值:通过导数的符号变化来确定函数的最大值和最小值。
- 函数的图像绘制:通过导数的性质来绘制函数的图像,如切线、拐点等。
3. 实际问题的应用
- 面积和体积问题:通过函数的积分来求解曲线所围成的面积和旋转体的体积。
- 最优化问题:通过函数的极值来求解实际问题中的最优解,如最大利润、最小成本等。
结论:
函数与导数在实际问题中具有广泛的应用。通过函数的建模和分析,可以更好地理解和解决实际问题。导数的应用可以帮助我们求解函数的增减性、极值、图像等问题。在解题过程中,需要灵活运用函数与导数的知识,将数学与实际问题相结合,提高问题解决能力。
高中数学教案必修一 篇三
一、课程性质与任务
数学是研究空间形式和数量关系的科学,是科学和技术的基础,是人类文化的重要组成部分。
数学课程是中等职业学校学生必修的一门公共基础课。本课程的任务是:使学生掌握必要的数学基础知识,具备必需的相关技能与能力,为学习专业知识、掌握职业技能、继续学习和终身发展奠定基础。
二、课程教学目标
1.在九年义务教育基础上,使学生进一步学习并掌握职业岗位和生活中所必要的数学基础知识。
2.培养学生的计算技能、计算工具使用技能和数据处理技能,培养学生的观察能力、空间想象能力、分析与解决问题能力和数学思维能力。
3.引导学生逐步养成良好的学习习惯、实践意识、创新意识和实事求是的科学态度,提高学生就业能力与创业能力。
三、教学内容结构
本课程的教学内容由基础模块、职业模块和拓展模块三个部分构成。
1.基础模块是各专业学生必修的基础性内容和应达到的基本要求,教学时数为128学时。
2.职业模块是适应学生学习相关专业需要的限定选修内容,各学校根据实际情况进行选择和安排教学,教学时数为32~64学时。
3.拓展模块是满足学生个性发展和继续学习需要的任意选修内容,教学时数不做统一规定。
四、教学内容与要求
(一)本大纲教学要求用语的表述1.认知要求(分为三个层次)
了解:初步知道知识的含义及其简单应用。
理解:懂得知识的概念和规律(定义、定理、法则等)以及与其它相关知识的联系。掌握:能够应用知识的概念、定义、定理、法则去解决一些问题。2.技能与能力培养要求(分为三项技能与
四项能力)
计算技能:根据法则、公式,或按照一定的操作步骤,正确地进行运算求解。计算工具使用技能:正确使用科学型计算器及常用的数学工具软件。数据处理技能:按要求对数据(数据表格)进行处理并提取有关信息。观察能力:根据数据趋势,数量关系或图形、图示,描述其规律。
空间想象能力:依据文字、语言描述,或较简单的几何体及其组合,想象相应的空间图形;能够在基本图形中找出基本元素及其位置关系,或根据条件画出图形。
分析与解决问题能力:能对工作和生活中的简单数学相关问题,作出分析并运用适当的数学方法予以解决。
数学思维能力:依据所学的数学知识,运用类比、归纳、综合等方法,对数学及其应用问题能进行有条理的思考、判断、推理和求解;针对不同的问题(或需求),会选择合适的模型(模式)。
(二)教学内容与要求1.基础模块(128学时)
第1单元集合(10学时)
第2单元不等式(8学时)
第6单元数列(10学时)
第7单元平面向量(矢量)(10学时)
第8单元直线和圆的方程(18学时)
第10单元概率与统计初步(16学时)
2.职业模块
第2单元坐标变换与参数方程(12学时)
高中数学教案必修一 篇四
掌握三角函数的单调性以及三角函数值的取值范围。
经历三角函数的单调性的探索过程,提升逻辑推理能力。
在猜想计算的过程中,提高学习数学的兴趣。
三角函数的单调性以及三角函数值的取值范围。
探究三角函数的单调性以及三角函数值的取值范围过程。
(一)引入新课
提出问题:如何研究三角函数的单调性
(四)小结作业
提问:今天学习了什么?
引导学生回顾:基本不等式以及推导证明过程。
课后作业:
思考如何用三角函数单调性比较三角函数值的大小。
高中数学教案必修一 篇五
了解双曲线的定义,几何图形和标准方程,知道它的简单性质。
1、双曲线 的 轴在 轴上, 轴在 轴上,实轴长等于 ,虚轴长等于 ,焦距等于 ,顶点坐标是 ,焦点坐标是 ,
渐近线方程是 ,离心率 ,若点 是双曲线上的点,则 , 。
2、又曲线 的左支上一点到左焦点的距离是7,则这点到双曲线的右焦点的距离是
3、经过两点 的双曲线的标准方程是 。
4、双曲线的渐近线方程是 ,则该双曲线的离心率等于 。
5、与双曲线 有公共的渐近线,且经过点 的双曲线的方程为
1、双曲线的离心率等于 ,且与椭圆 有公共焦点,求该双曲线的方程。
2、已知椭圆具有性质:若 是椭圆 上关于原点对称的两个点,点 是椭圆上任意一点,当直线 的斜率都存在,并记为 时,那么 之积是与点 位置无关的定值,试对双曲线 写出具有类似特性的性质,并加以证明。
3、设双曲线 的半焦距为 ,直线 过 两点,已知原点到直线 的距离为 ,求双曲线的离心率。
1、双曲线 上一点 到一个焦点的距离为 ,则它到另一个焦点的距离为 。
2、与双曲线 有共同的渐近线,且经过点 的双曲线的一个焦点到一条渐近线的距离是 。
3、若双曲线 上一点 到它的右焦点的距离是 ,则点 到 轴的距离是
4、过双曲线 的左焦点 的直线交双曲线于 两点,若 。则这样的直线一共有 条。
1、 已知双曲线 的焦点到渐近线的距离是其顶点到渐近线距离的2倍,则该双曲线的离心率
2、 已知双曲线 的焦点为 ,点 在双曲线上,且 ,则点 到 轴的距离为 。
3、 双曲线 的焦距为
4、 已知双曲线 的一个顶点到它的一条渐近线的距离为 ,则
5、 设 是等腰三角形, ,则以 为焦点且过点 的双曲线的离心率为 。
6、 已知圆 。以圆 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为
高中数学教案必修一 篇六
一、课程性质与任务
数学是研究空间形式和数量关系的科学,是科学和技术的基础,是人类文化的重要组成部分。
数学课程是中等职业学校学生必修的一门公共基础课。本课程的任务是:使学生掌握必要的数学基础知识,具备必需的相关技能与能力,为学习专业知识、掌握职业技能、继续学习和终身发展奠定基础。
二、课程教学目标
1、在九年义务教育基础上,使学生进一步学习并掌握职业岗位和生活中所必要的数学基础知识。
2、培养学生的计算技能、计算工具使用技能和数据处理技能,培养学生的观察能力、空间想象能力、分析与解决问题能力和数学思维能力。
3、引导学生逐步养成良好的学习习惯、实践意识、创新意识和实事求是的科学态度,提高学生就业能力与创业能力。
三、教学内容结构
本课程的教学内容由基础模块、职业模块和拓展模块三个部分构成。
1、基础模块是各专业学生必修的基础性内容和应达到的基本要求,教学时数为128学时。
2、职业模块是适应学生学习相关专业需要的限定选修内容,各学校根据实际情况进行选择和安排教学,教学时数为32~64学时。
3、拓展模块是满足学生个性发展和继续学习需要的任意选修内容,教学时数不做统一规定。
四、教学内容与要求
(一)本大纲教学要求用语的表述1.认知要求(分为三个层次)
了解:初步知道知识的含义及其简单应用。
理解:懂得知识的概念和规律(定义、定理、法则等)以及与其它相关知识的联系。掌握:能够应用知识的概念、定义、定理、法则去解决一些问题。2.技能与能力培养要求(分为三项技能与四项能力)
计算技能:根据法则、公式,或按照一定的操作步骤,正确地进行运算求解。计算工具使用技能:正确使用科学型计算器及常用的数学工具软件。数据处理技能:按要求对数据(数据表格)进行处理并提取有关信息。观察能力:根据数据趋势,数量关系或图形、图示,描述其规律。
空间想象能力:依据文字、语言描述,或较简单的几何体及其组合,想象相应的空间图形;能够在基本图形中找出基本元素及其位置关系,或根据条件画出图形。
分析与解决问题能力:能对工作和生活中的简单数学相关问题,作出分析并运用适当的数学方法予以解决。
数学思维能力:依据所学的数学知识,运用类比、归纳、综合等方法,对数学及其应用问题能进行有条理的思考、判断、推理和求解;针对不同的问题(或需求),会选择合适的模型(模式)。
(二)教学内容与要求1.基础模块(128学时)
第1单元集合(10学时)
第2单元不等式(8学时)
第6单元数列(10学时)
第7单元平面向量(矢量)(10学时)
第8单元直线和圆的方程(18学时)
第10单元概率与统计初步(16学时)
2、职业模块
第2单元坐标变换与参数方程(12学时)