最新九年级数学教案全册【最新6篇】

时间:2012-05-02 09:38:23
染雾
分享
WORD下载 PDF下载 投诉

最新九年级数学教案全册 篇一

随着社会的发展和科技的进步,数学作为一门基础学科,在我们的日常生活中起着越来越重要的作用。作为九年级学生的我们,将会接触到更加深入和复杂的数学知识。为了更好地帮助我们掌握这些知识,教师们精心编写了最新九年级数学教案全册,为我们提供了全面的教学指导。

这本教案全册分为多个单元,每个单元都涵盖了不同的数学知识点和技能。比如,第一单元是关于代数基础的学习,我们将学习如何解一元一次方程和一元一次不等式,以及如何进行因式分解等。通过这些基础知识的学习,我们可以进一步扩展我们的数学思维和解题能力。

除了代数基础,教案全册还包括了几何、概率、统计等其他重要的数学领域。在几何单元中,我们将学习不同形状的性质和计算方法,如三角形、四边形等。在概率和统计单元中,我们将学习如何进行概率计算和统计分析,掌握一些常见的概率和统计方法。这些知识的学习将帮助我们更好地理解和应用数学在我们生活中的实际问题中。

教案全册中,每个单元都包含了详细的教学步骤和练习题,以帮助我们更好地理解和掌握所学知识。在每个单元的开头,教师会列出学习目标和重点,以便我们能够有针对性地进行学习。在每个小节的末尾,还有相关的练习题,供我们巩固所学内容。

为了更好地培养我们的数学思维和解题能力,教案全册还包含了一些拓展和探究性的题目。这些题目旨在让我们运用所学知识,进行更深入的思考和探索。通过解决这些题目,我们可以提高自己的问题解决能力和创新思维。

总的来说,最新九年级数学教案全册为我们提供了全面的数学学习指导。通过认真学习和实践,我们将能够更好地掌握九年级数学知识,为未来的学习和发展打下坚实的基础。

最新九年级数学教案全册 篇二

数学作为一门重要的学科,不仅仅是为了应对考试和升学,更是为了培养我们的逻辑思维和解决问题的能力。为了更好地引导我们的学习,教师们编写了最新九年级数学教案全册,旨在帮助我们更好地掌握数学知识和技能。

这本教案全册分为多个单元,每个单元都涵盖了不同的数学领域和知识点。其中,代数基础是九年级数学的重点之一。通过学习代数基础,我们将能够掌握解一元一次方程和一元一次不等式的方法,以及进行因式分解和分式运算等技巧。这些基础知识将为我们进一步学习和应用更高级的数学概念打下坚实的基础。

除了代数基础,教案全册还包括了几何、概率、统计等其他重要的数学领域。在几何单元中,我们将学习不同形状的性质和计算方法,如三角形、四边形等。在概率和统计单元中,我们将学习如何进行概率计算和统计分析,掌握一些常见的概率和统计方法。这些知识的学习将帮助我们更好地理解和应用数学在我们生活中的实际问题中。

教案全册中,每个单元都包含了详细的教学步骤和练习题,以帮助我们更好地理解和掌握所学知识。在每个单元的开头,教师会列出学习目标和重点,以便我们能够有针对性地进行学习。在每个小节的末尾,还有相关的练习题,供我们巩固所学内容。

为了培养我们的数学思维和解题能力,教案全册还包含了一些拓展和探究性的题目。这些题目要求我们运用所学知识进行较为复杂的问题解决和思考。通过解决这些题目,我们将能够提高自己的问题解决能力和创新思维。

总的来说,最新九年级数学教案全册为我们提供了全面的数学学习指导。通过认真学习和实践,我们将能够更好地掌握九年级数学知识,为未来的学习和发展打下坚实的基础。

最新九年级数学教案全册 篇三

教学目标

1、了解代数和的概念,理解有理数加减法可以互相转化,会进行加减混合运算;

2、 通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想;

3、通过加法运算练习,培养学生的运算能力。

教学建议

(一)重点、难点分析

本节课的重点是依据运算法则和运算律准确迅速地进行有理数的加减混合运算,难点是省略加号与括号的代数和的计算。

由于减法运算可以转化为加法运算,所以加减混合运算实际上就是有理数的加法运算。了解运算符号和性质符号之间的关系,把任何一个含有有理数加、减混合运算的算式都看成和式,这是因为有理数加、减混合算式都看成和式,就可灵活运用加法运算律,简化计算。

(二)知识结构

(三)教法建议

1、通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能,讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正。

2、关于“去括号法则”,只要学生了解,并不要求追究所以然。

3、任意含加法、减法的算式,都可把运算符号理解为数的性质符号,看成省略加号的和式。这时,称这个和式为代数和。再例如

-3-4表示-3、-4两数的代数和,

-4+3表示-4、+3两数的代数和,

3+4表示3和+4的代数和

等。代数和概念是掌握有理数运算的一个重要概念,请老师务必给予充分注意。

4、先把正数与负数分别相加,可以使运算简便。

5、在交换加数的位置时,要连同前面的符号一起交换。如

12-5+7 应变成 12+7-5,而不能变成12-7+5。

教学设计示例一

有理数的加减混合运算(一)

一、素质教育目标

(一)知识教学点

1、了解:代数和的概念。

2、理解:有理数加减法可以互相转化。

3、应用:会进行加减混合运算。

(二)能力训练点

培养学生的口头表达能力及计算的准确能力。

(三)德育渗透点

通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想。

(四)美育渗透点

学习了本节课就知道一切加减法运算都可以统一成加法运算。体现了数学的统一美。

二、学法引导

1、教学方法:采用尝试指导法,体现学生主体地位,每一环节,设置一定题目进行巩固练

习,步步为营,分散难点,解决关键问题。

2、学生写法:练习→寻找简单的一般性的方法→练习巩固。

三、重点、难点、疑点及解决办法

1、重点:把加减混合运算算式理解为加法算式。

2、难点:把省略括号和的形式直接按有理数加法进行计算。

四、课时安排

1课时

五、教具学具准备

投影仪或电脑、自制胶片。

六、师生互动活动设计

教师提出问题学生练习讨论,总结归纳加减混合运算的一般步骤,教师出示练习题,学生练习反馈。

七、教学步骤

(一)创设情境,复习引入

师:前面我们学习了有理数的加法和减法,同学们学得都很好!请同学们看以下题目: -9+(+6);(-11)-7.

师:(1)读出这两个算式。

(2)“+、-”读作什么?是哪种符号?

“+、-”又读作什么?是什么符号?

学生活动:口答教师提出的问题。

师继续提问:(1)这两个题目运算结果是多少?

(2)(-11)-7这题你根据什么运算法则计算的?

学生活动:口答以上两题(教师订正)。

师小结:减法往往通过转化成加法后来运算。

师:把两个算式-9+(+6)与(-11)-7之间加上减号就成了一个题目,这个题目中既有加法又有减法,就是我们今天学习的有理数的加减混合运算。(板书课题2.7有理数的加减混合运算(1))

教学说明:由复习的题目巧妙地填“-”号,就变成了今天将学的加减混合运算内容,使学生更形象、更深刻地明白了有理数加减混合运算题目组成。

(二)探索新知,讲授新课

1、讲评(-9)+(-6)-(-11)-7.

(1)省略括号和的形式

师:看到这个题你想怎样做?

学生活动:自己在练习本上计算。

教师针对学生所做的方法区别优劣。

师:我们对此类题目经常采用先把减法转化为加法,这时就成了-9,+6,+11,-7的和,加号通常可以省略,括号也可以省略,即:

原式=(-9)+(+6)+(+11)+(-7)

=-9+6+11-7.

提出问题:虽然加号、括号省略了,但-9+6+11-7仍表示-9,+6,+11,-7的和,所以这个算式可以读成??

学生活动:先自己练习尝试用两种读法读,口答(教师纠正)。

巩固练习:(出示投影1)

1、把下列算式写成省略括号和的形式,并把结果用两种读法读出来。

(1)(+9)-(+10)+(-2)-(-8)+3;

(2)+()-()-()。

2、判断

式子-7+1-5-9的正确读法是()。

a.负7、正1、负5、负9;

b.减7、加1、减5、减9;

c.负7、加1、负5、减9;

d.负7、加1、减5、减9;

学生活动:1题两个学生板演,两个学生用两种读法读出结果,其他同学自行演练,然后同桌读出互相纠正,2题抢答。

2、用加法运算律计算出结果

师:既然算式能看成几个数的和,我们可以运用加法的运算律进行计算,通常同号两数放在一起分别相加。

-9+6+11-7

=-9-7+6+11.

学生活动:按教师要求口答并读出结果。

巩固练习:(出示投影2)

填空:

1.-4+7-4=-______________-_______________+_______________

2、+6+9-15+3=_____________+_____________+_____________-_____________

3.-9-3+2-4=____________9____________3____________4____________2

4.____________________________________

学生活动:讨论后回答。

师:-9-7+6+11怎样计算?

学生活动:口答

〔板书〕

-9-7+6+11

=-16+17

=1

巩固练习:(出示投影3)

1、计算(1)-1+2-3-4+5;

(2)。

2、做完前面两个题目计算:(1)(+9)-(+10)+(-2)-(-8)+3;

(2)。

学生活动:四个同学板演,其他同学在练习本上做。

师小结:有理数加减法混合运算的题目的步骤为:

1、减法转化成加法;

2、省略加号括号;

3、运用加法交换律使同号两数分别相加;

4、按有理数加法法则计算。

(三)反馈练习

(出示投影4)

计算:(1)12-(-18)+(-7)-15;

(2)。

学生活动:可采用同桌互相测验的方法,以达到纠正错误的目的。

(四)归纳小结

师:1.怎样做加减混合运算题目?

2、省略括号和的形式的两种读法?

学生活动:口答。

八、随堂练习

1、把下列各式写成省略括号的和的形式

(1)(-5)+(+7)-(-3)-(+1);

(2)10+(-8)-(+18)-(-5)+(+6)。

2、说出式子-3+5-6+1的两种读法。

3、计算

(1)0-10-(-8)+(-2);

(2)-4.5+1.8-6.5+3-4;

(3)。

九、布置作业

(一)必做题:1.计算:(1)-8+12-16-23;

(2);

(3)-40-28-(-19)+(-24)-(-32);

(4)-2.7+(-3.2)-(1.8)-2.2;

(二)选做题:(1)当时,,,哪个最大,哪个最小?

(2)当时,,,哪个最大,哪个最小?

十、板书设计

最新九年级数学教案全册 篇四

教学目标

理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题。

通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的解题步骤。

重难点关键

1。重点:讲清"直接降次有困难,如x2+6x—16=0的一元二次方程的解题步骤。

2。难点与关键:不可直接降次解方程化为可直接降次解方程的"化为"的转化方法与技巧。

教学过程

一、复习引入

(学生活动)请同学们解下列方程

(1)3x2—1=5 (2)4(x—1)2—9=0 (3)4x2+16x+16=9 (4) 4x2+16x=—7

老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得

x=± 或mx+n=± (p≥0)。

如:4x2+16x+16=(2x+4)2 ,你能把4x2+16x=—7化成(2x+4)2=9吗?

二、探索新知

列出下面问题的方程并回答:

(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?

(2)能否直接用上面三个方程的解法呢?

问题2:要使一块矩形场地的长比宽多6m,并且面积为16m2,场地的长和宽各是多少?

(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有。

(2)不能。

既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:

x2+6x—16=0移项→x2+6x=16

两边加(6/2)2使左边配成x2+2bx+b2的形式 → x2+6x+32=16+9

左边写成平方形式 → (x+3)2=25 降次→x+3=±5 即 x+3=5或x+3=—5

解一次方程→x1=2,x2= —8

可以验证:x1=2,x2= —8都是方程的根,但场地的宽不能使负值,所以场地的宽为2m,常为8m。

像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法。

可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解。

例1。用配方法解下列关于x的方程

(1)x2—8x+1=0 (2)x2—2x— =0

分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上。

解:略

最新九年级数学教案全册 篇五

教学目标:

1、理解切线的判定定理,并学会运用。

2、知道判定切线常用的方法有两种,初步掌握方法的选择。

教学重点:切线的判定定理和切线判定的方法。

教学难点:切线判定定理中所阐述的圆的切线的两大要素:一是经过半径外端;二是直线垂直于这条半径;学生开始时掌握不好并极容易忽视一。

教学过程:

一、复习提问

问题2.直线和圆有几种位置关系?

问题3.如何判定直线l是⊙o的切线?

启发:(1)直线l和⊙o的公共点有几个?

(2)圆心o到直线l的距离与半径的数量关系 如何?

学生答完后,教师强调(2)是判定直线 l是⊙o的切线的常用方法,即: 定理:圆心o到直线l的距离oa 等于圆的半 (如图1,投影显示)

再启发:若把距离oa理解为 oa⊥l,oa=r;把点a理解为半径在圆上的端点 ,请同学们试将上面定理用新的理解改写成新的命题,此命题就 是这节课要学的“切线的判定定理”(板书课题)

二、引入新课内容

证明定理:启发学生分清命题的题设和结论,写出已 知、求证,分析证明思路,阅读课本p60。

定理:经过半径外端并且垂直于这条半径的直线是圆的切线。

定理的证明:已知:直线l经过半径oa的外端点a,直线l⊥oa,

求证:直线l是⊙o的切线

证明:略

定理的符号语言:∵直线l⊥oa,直线l经过半径oa的外端a

∴直线l为⊙o的切线。

是非题:

(1)垂直于圆的半径的直线一定是这个圆的切线。 ( )

(2)过圆的半径的外端的直线一定是这个圆的切线。 ( )

三、例题讲解

例1、已知:直线ab经过⊙o上的点c,并且oa=ob,ca=cb。

求证:直线ab是⊙o的切线。

引导学生分析:由于ab过⊙o上的点c,所以连结oc,只要证明ab⊥oc即可。

证明:连结oc.

∵oa=ob,ca=cb,

∴ab⊥oc

又∵直线ab经过半径oc的外端c

∴直线ab是⊙o的切线。

练习1、如图,已知⊙o的半径为r,直线ab经过⊙o上的点a,并且ab=r,∠oba=45°。求证:直线ab是⊙o的切线。

练习2、如图,已知ab为⊙o的直径,c为⊙o上一点,ad⊥cd于点d,ac平分∠bad。

求证:cd是⊙o的切线。

例2、如图,已知ab是⊙o的直径,点d在ab的延长

线上,且bd=ob,过点d作射线de,使∠ade=30°。

求证:de是⊙o的切线。

思考题:在rt△abc中,∠b=90°,∠a的平分线交bc于d,以d为圆心,bd为半径作圆,问⊙d的切线有几条?是哪几条?为什么?

四、小结

1、切线的判定定理。

2、判定一条直线是圆的切线的方法:

①定义:直线和圆有唯一公共点。

②数量关系:直线到圆心的距离等于该圆半径(即d = r)。[

③切线的判定定理:经过半径外端且与这条半径垂直的直线是圆的切线。

3、证明一条直线是圆的切线的辅助线和证法规律。

凡是已知公共点(如:直线经过圆上的点;直线和圆有一个公共点;)往往是"连结"圆心和公共点,证明"垂直"(直线和半径);若不知公共点,则过圆心作一条线段垂直于直线,证明所作的线段等于半径。即已知公共点,“连半径,证垂直”;不知公共点,则“作垂直,证半径”。

五、布置作业:略

《切线的判定》教后体会

本课例《切线的判定》作为市考试院调研课型兼区级研讨课,我以“教师为引导,学生为主体”的二期课改的理念出发,通过学生自我活动得到数学结论作为教学重点,呈现学生真实的思维过程为教学宗旨,进行教学设计,目的在于让学生对知识有一个本质的、有效的理解。本节课切实反映了平时的教学情况,为前来调研和研讨的老师提供了真实的样本。反思本节课,有以下几个成功与不足之处:

成功之处:

一、 教材的二度设计顺应了学生的认知规律

这批学生习惯于单一知识点的学习,即得出一个知识点,必须由浅入深反复进行练习,巩固后方能加以提升与综合,否则就会混淆概念或定理的条件和结论,导致错误,久之便会失去学习数学的兴趣和信心。本教时课本上将切线判定定理和性质定理的导出作为第一课时,两个定理的运用和切线的两种常用的判定方法作为第二课时,学生往往会因第一时间得不到及时的巩固,对定理本质的东西不能很好地理解,在运用时抓不住关键,解题仅仅停留在模仿层次上,接受能力薄弱的学生更是因知识点多不知所措,在云里雾里。二度设计将切线的判定方法作为第一课时,切线的性质定理以及两个定理的综合运用作为第二课时,这样的设计即是对前面所学的“直线与圆相切的判定方法”的复习,又是对后面学习综合运用两个定理,合理选择两种方法判定切线作了铺垫,教学呈现了一个循序渐进、温过知新的过程。从学生的反馈情况判断,教学效果较为理想。

二、重视学生数感的培养呼应了课改的理念

数感类似与语感、乐感、美感,拥有了感觉,知识便会融会贯通,学习就会轻松。拥有数感,不仅会对数学知识反应灵敏,更会在生活中不知不觉运用数学思维方式解决实际问题。本节课中,两个例题由教师诱导,学生发现完成的,而三个习题则完全放手让学生去思考完成,不乏有不会做和做得复杂的学生,但在展示和交流中,撞击出思维的火花,难以忘怀。让学生尝试总结规律,也是对学生能力的培养,在本节课中,辅助线的规律是由学生得出,事实证明,学生有这样的理解、概括和表达能力。通过思考得出正确的结论,这个结论往往是刻骨铭心的,长此以往,对数和形的感觉会越来越好。

不足之处:

一、这节课没有“高潮”,没有让学生特别兴奋激起求知欲的情境,整个教学过程是在一个平静、和谐的氛围中完成的。

二、课的引入太直截了当,脱离不了应试教学的味道。

三、教学风格的定势使所授知识不能很合理地与生活实际相联系,一定程度上阻碍了学生解决实际问题能力的发展。

通过本节课的教学,我深刻感悟到在教学实践中,教师要不断地充实自己,拓宽知识面,努力突破已有的教学形状,适应现代教育,适应现代学生。课堂教学中,敢于实验,舍得放手,尽量培养学生主体意识,问题让学生自己去揭示,方法让学生自己去探索,规律让学生自己去发现,知识让学生自己去获得,教师只提供给学生现实情境、充足的思考时间和活动空间,给学生表现自我的机会和成功的体验,培养学生的自我意识,发挥学生的主体作用,来真正实现《数学课程标准》中提出的“学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者”这一教学理念。

最新九年级数学教案全册 篇六

教学目标

1、知道解一元二次方程的基本思路是“降次”化一元二次方程为一元一次方程。

2、学会用因式分解法和直接开平方法解形如(ax+b)2-k=0(k≥0)的方程。

3、引导学生体会“降次”化归的思路。

重点难点

重点:掌握用因式分解法和直接开平方法解形如(ax+b)2-k=0(k≥0)的方程。

难点:通过分解因式或直接开平方将一元二次方程降次为一元一次方程。

教学过程

(一)复习引入

1、判断下列说法是否正确

(1)若p=1,q=1,则pq=l(),若pq=l,则p=1,q=1();

(2)若p=0,g=0,则pq=0(),若pq=0,则p=0或q=0();

(3)若x+3=0或x-6=0,则(x+3)(x-6)=0(),

若(x+3)(x-6)=0,则x+3=0或x-6=0();

(4)若x+3=或x-6=2,则(x+3)(x-6)=1(),

若(x+3)(x-6)=1,则x+3=或x-6=2()。

答案:(1)√,×。(2)√,√。(3)√,√。(4)√,×。

2、填空:若x2=a;则x叫a的,x=;若x2=4,则x=;

若x2=2,则x=。

答案:平方根,±,±2,±。

(二)创设情境

前面我们已经学了一元一次方程和二元一次方程组的解法,解二元一次方程组的基本思路是什么?(消元、化二元一次方程组为一元一次方程)。由解二元一次方程组的基本思路,你能想出解一元二次方程的基本思路吗?

引导学生思考得出结论:解一元二次方程的基本思路是“降次”化一元二次方程为一元一次方程。

给出1.1节问题一中的方程:(35-2x)2-900=0。

问:怎样将这个方程“降次”为一元一次方程?

(三)探究新知

让学生对上述问题展开讨论,教师再利用“复习引入”中的内容引导学生,按课本p.6那样,用因式分解法和直接开平方法,将方程(35-2x)2-900=0“降次”为两个一元一次方程来解。让学生知道什么叫因式分解法和直接开平方法。

(四)讲解例题

展示课本p.7例1,例2。

按课本方式引导学生用因式分解法和直接开平方法解一元二次方程。

引导同学们小结:对于形如(ax+b)2-k=0(k≥0)的方程,既可用因式分解法解,又可用直接开平方法解。

因式分解法的基本步骤是:把方程化成一边为0,另一边是两个一次因式的乘积(本节课主要是用平方差公式分解因式)的形式,然后使每一个一次因式等于0,分别解两个一元一次方程,得到的两个解就是原一元二次方程的解。

直接开平方法的步骤是:把方程变形成(ax+b)2=k(k≥0),然后直接开平方得ax+b=和ax+b=-,分别解这两个一元一次方程,得到的解就是原一元二次方程的解。

注意:(1)因式分解法适用于一边是0,另一边可分解成两个一次因式乘积的一元二次方程;

(2)直接开平方法适用于形如(ax+b)2=k(k≥0)的方程,由于负数没有平方根,所以规定k≥0,当k<0时,方程无实数解。

(五)应用新知

课本p.8,练习。

(六)课堂小结

1、解一元二次方程的基本思路是什么?

2、通过“降次”,把—元二次方程化为两个一元一次方程的方法有哪些?基本步骤是什么?

3、因式分解法和直接开平方法适用于解什么形式的一元二次方程?

(七)思考与拓展

不解方程,你能说出下列方程根的情况吗?

(1)-4x2+1=0;(2)x2+3=0;(3)(5-3x)2=0;(4)(2x+1)2+5=0。

答案:(1)有两个不相等的实数根;(2)和(4)没有实数根;(3)有两个相等的实数根

通过解答这个问题,使学生明确一元二次方程的解有三种情况。

布置作业

最新九年级数学教案全册【最新6篇】

手机扫码分享

Top