高一数学必修4教案设计(通用6篇)

时间:2012-04-09 01:43:45
染雾
分享
WORD下载 PDF下载 投诉

高一数学必修4教案设计 篇一

教案名称:二次函数的基本概念与性质

教学目标:

1. 了解二次函数的基本概念与性质;

2. 掌握二次函数的图像、顶点、对称轴等相关性质;

3. 能够应用二次函数的性质解决实际问题。

教学重点:

1. 二次函数的基本概念;

2. 二次函数的图像和性质。

教学难点:

1. 二次函数的顶点和对称轴的求解;

2. 通过实际问题应用二次函数的性质。

教学准备:

1. 教材《高中数学必修4》;

2. 教学投影仪和电脑;

3. 课件、黑板、粉笔;

4. 习题册和练习册。

教学过程:

Step 1 引入新知

1. 利用教学投影仪和电脑展示二次函数的图像,引起学生的兴趣和好奇心。

2. 引导学生观察图像,提出问题:“你们观察到了什么规律?”

Step 2 探究二次函数的基本概念

1. 教师介绍二次函数的定义和一般式,并解释各个参数的含义。

2. 引导学生通过观察图像和数学计算,总结出二次函数的基本概念。

Step 3 探究二次函数的图像性质

1. 教师利用教学投影仪和电脑展示不同参数对二次函数图像的影响。

2. 引导学生观察图像,总结出二次函数图像的特点。

Step 4 计算二次函数的顶点和对称轴

1. 教师详细讲解如何计算二次函数的顶点和对称轴。

2. 引导学生通过练习题进行实践操作,巩固所学知识。

Step 5 应用二次函数解决实际问题

1. 教师给出一些实际问题,引导学生通过建立二次函数模型解决问题。

2. 学生进行小组合作,讨论解题思路和方法。

Step 6 练习巩固

1. 教师布置相应的习题,让学生进行练习巩固所学知识。

2. 教师在黑板上解答习题,引导学生进行自我纠错。

教学反思:

通过本节课的教学,学生对二次函数的基本概念和性质有了初步的了解,并能够应用二次函数解决实际问题。但是,在计算顶点和对称轴的过程中,部分学生还存在一定的困难。在以后的教学中,需要加强这一部分的讲解和练习,提高学生的计算能力。

高一数学必修4教案设计 篇二

教案名称:解二次方程的方法与应用

教学目标:

1. 掌握解一元二次方程的常见方法;

2. 能够通过实际问题建立二次方程,并解决问题;

3. 培养学生分析问题、解决问题的能力。

教学重点:

1. 解一元二次方程的常见方法;

2. 实际问题的建模与解决。

教学难点:

1. 解一元二次方程的应用题的解题思路;

2. 培养学生的问题分析和解决能力。

教学准备:

1. 教材《高中数学必修4》;

2. 教学投影仪和电脑;

3. 课件、黑板、粉笔;

4. 习题册和练习册。

教学过程:

Step 1 引入新知

1. 利用教学投影仪和电脑展示一道实际问题,引起学生的兴趣和好奇心。

2. 引导学生思考如何用数学方法解决这个实际问题。

Step 2 回顾解一元二次方程的方法

1. 教师复习解一元二次方程的常见方法,包括因式分解法、配方法和求根公式法。

2. 引导学生回顾所学知识,解答相关问题。

Step 3 实际问题的建模与解决

1. 教师给出一些实际问题,引导学生建立二次方程模型。

2. 学生进行小组合作,讨论解题思路和方法。

Step 4 解答问题并讨论解题思路

1. 学生展示解题过程,教师引导学生讨论解题思路的不同之处。

2. 教师总结不同解题思路的优缺点,并给出解题的标准步骤。

Step 5 练习巩固

1. 教师布置相应的习题,让学生进行练习巩固所学知识。

2. 学生进行个人答题,教师在黑板上解答习题。

教学反思:

通过本节课的教学,学生掌握了解一元二次方程的常见方法,并能够应用二次方程解决实际问题。但是,在建立二次方程模型的过程中,部分学生还存在一定的困难。在以后的教学中,需要加强这一部分的讲解和练习,培养学生的问题分析和解决能力。

高一数学必修4教案设计 篇三

《平面向量的数量积》教案

教学准备

教学目标

1、掌握平面向量的数量积及其几何意义;

2、掌握平面向量数量积的重要性质及运算律;

3、了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;

4、掌握向量垂直的条件。

教学重难点

教学重点:平面向量的数量积定义

教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用

教学工具

投影仪

教学过程

一、复习引入:

1、向量共线定理 向量与非零向量共线的充要条件是:有且只有一个非零实数λ,使=λ

五,课堂小结

(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?

(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

(3)你在这节课中的表现怎样?你的体会是什么?

六、课后作业

p107 习题2.4 a组2、7题

课后小结

(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?

(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

(3)你在这节课中的表现怎样?你的体会是什么?

课后习题

作业

p107 习题2.4 a组2、7题

板书

高一数学必修4教案设计 篇四

教学类型:探究研究型

设计思路:通过一系列的猜想得出德。摩根律,但是这个结论仅仅是猜想,数学是一门科学,所以需要论证它的正确性,因此本节通过剖析维恩图的四部分来验证猜想的正确性,并对德摩根律进行简单的应用,因此我们制作了本微课。

教学过程:

一、片头

(20秒以内)

内容:你好,现在让我们一起来学习《集合的运算——自己探索也能发现的数学规律(第二讲)》。

第 1 张ppt

12秒以内

二、正文讲解

(4分20秒左右)

1、引入:牛顿曾说过:“没有大胆的猜测,就做不出伟大的发现。”

上节课老师和大家学习了集合的运算,得出了一个有趣的规律。课后,你举例验证了这个规律吗?

那么,这个规律是偶然的,还是一个恒等式呢?

第 2 张ppt

28秒以内

2、规律的验证:

试用集合a,b的交集、并集、补集分别表示维恩图中1,2,3,4及彩色部分的集合,通过剖析维恩图来验证猜想的正确性使用

第 3 张ppt

2分10 秒以内

3、抽象概括: 通过我们的观察和验证,我们发现这个规律是一个恒等式。

而这个规律就是180年前著名的英国数学家德摩根发现的。

为了纪念他,我们将它称为德摩根律。

原来我们通过自己的探索也能发现这么伟大的数学规律。

第 4 张ppt

30秒以内

4、例题应用:使用例题形式,将的德摩根定律的结论加以应用,让学生更加熟悉集合的运算

第 5 张ppt

1分20秒以内

三、结尾

(20秒以内)

通过这在道题的解答,我们发现德摩根律为解答集合运算问题提供了更为简便的方法。

希望你在今后的学习中,勇于探索,发现更多有趣的规律。

第 6 张ppt

10秒以内

教学反思(自我评价)

学生在学习集合时会接触到很多的集合运算,往往学生觉得这是集合中的难点,因此本节课通过一系列的猜想,以精彩的动画展示,让学生在直观的环境下轻松的学习,提高学生学习数学的兴趣,并通过层层深入的讲解,让学生进一步加强对集合运算的理解和应用能力,效果非常好。

高一数学必修4教案设计 篇五

在内容安排上,第一章三角函数的学习为第二章平面向量作了必要的准备,同时应用第二章平面向量的知识为第三章推导两角差的余弦公式,使第三章三角恒等变换可以独立成章。学习完后,心中有几点体会如下:

为了强调学生的主体性,把时间还给学生,有的教师上课便叫学生自己看书,教师指导性差、没有提示和具体要求,看得如何没有检查也没有反馈等等。一些课堂上教师片面追求小组合作这一学习形式,对小组合作学习的目的、时机及过程没有进行认真设计。这些学习方式,学生表面上获得了自主的权利,可实际上并没有做到真正的自主。

课堂教学是开展反思性学习的主渠道。在课堂教学中要有意识的引导学生从多方位、多角度进行反思性的学习;要引导学生自然地合理地提出问题、自然地合理地解决问题、自然地合理地拓展问题,从而提高逻辑思维能力和解决问题的能力。

由于提出问题是解决问题的逻辑前提,并且提出问题对学生的思维品质和主动性有更高的要求,因此完整的数学学习应包括学“问”与学“答”两方面。教师应创设问题产生的情境,引导学生从解决现实问题和数学知识逻辑发展的需要中提出问题。如对两角和与差的余弦公式,既可以由观察诱导公式提出,也可以由如何求sin75°=?,cos15°=?等提出,也可以由函数的图像可以由函数的图像通过平移得到进而猜想它们的表达式也有内在的联系,也可以由现实中相应的问题提出。一节课尾声时,让学生进行一下反思,想想自己这节课都有什么收获?还有哪些疑问?当天睡前,反思一下今天自己的感受;或是一周反思一下自己的进步和不足等等。

本模块在三角函数一章减少了公式的数量,淡化了证明的技巧,尽量在探索中让学生发现新知。在削弱证明的同时,强调发展学生联系实际、观察和利用所学知识解决现实生活中部分问题的能力。

教学中要注意控制难度,避免进行综合性强、难度较大的数学题的训练,避免在解题技巧上做文章。

对课堂教学的有效性,我们不仅应该有全面衡量的意识,也应该有从定性与定量两方面衡量的意识。就当前课堂教学而言,我们要特别关注数学教学层次问题。以《平面向量基本定理》为例,采用“一个定理+三项注意”的模式,重点放在学生接受平面向量的基本定理和例题、习题的模仿与训练上,是一个层次;告诉学生平面向量基本定理蕴含着分解、转化思想,重点放在定理的得出和证明的方法上是另一层次;理解平面向量基底的作用与意义,师生共同探讨为什么要研究这个问题,怎样研究这个问题,搞清楚其中体现的数学思维是更高的一个层次;如果学生能由平面向量基本定理体会到“事物是相互联系、相互转化的”,“事情是由一定的基本要素构成的,可以用构成它的基本要素来表示”,“研究事物可转化为对它的基本要素的研究”,有助于养成理性地、有条理地思考和探究问题的习惯,那就更理想。

高一数学必修4教案设计 篇六

《任意角和弧度制》教案

教学准备

教学目标

1、知识与技能

(1)推广角的概念、引入大于 角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4)掌握所有与 角终边相同的角(包括 角)的表示方法;(5)树立运动变化观点,深刻理解推广后的角的概念;(6)揭示知识背景,引发学生学习兴趣。(7)创设问题情景,激发学生分析、探求的学习态度,强化学生的参与意识。

2、过程与方法

通过创设情境:“转体 ,逆(顺)时针旋转”,角有大于 角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习。

3、情态与价值

通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分。角的概念推广以后,知道角之间的关系。理解掌握终边相同角的表示方法,学会运用运动变化的观点认识事物。

教学重难点

重点: 理解正角、负角和零角的定义,掌握终边相同角的表示法。

难点: 终边相同的角的表示。

教学工具

投影仪等。

教学过程

思考:你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25

小时,你应当如何将它校准?当时间校准以后,分针转了多少度?

[取出一个钟表,实际操作]我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于之间,这正是我们这节课要研究的主要内容——任意角。

1.初中时,我们已学习了角的概念,它是如何定义的呢?

[展示投影]角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。如图1.1-1,一条射线由原来的位置,绕着它的端点o按逆时针方向旋转到终止位置ob,就形成角a.旋转开始时的射线叫做角的始边,ob叫终边,射线的端点o叫做叫a的顶点。

2.如上述情境中所说的校准时钟问题以及在体操比赛中我们经常听到这样的术语:“转体” (即转体2周),“转体”(即转体3周)等,都是遇到大于的角以及按不同方向旋转而成的角。同学们思考一下:能否再举出几个现实生活中“大于的角或按不同方向旋转而成的角”的例子,这些说明了什么问题?又该如何区分和表示这些角呢?

[展示课件]如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角, 这些都说明了我们研究推广角概念的必要性。 为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角(positive angle),按顺时针方向旋转所形成的角叫负角(negativeangle).如果一条射线没有做任何旋转,我们称它形成了一个零角(zero angle).

8.学习小结

(1) 你知道角是如何推广的吗?

(2) 象限角是如何定义的呢?

(3) 你熟练掌握具有相同终边角的表示了吗?会写终边落在x轴、y轴、直

线上的角的集合。

五、评价设计

1.作业:习题1.1 a组第1,2,3题。

2.多举出一些日常生活中的“大于的角和负角”的例子,熟练掌握他们的表示,

进一步理解具有相同终边的角的特点。

课后小结

(1) 你知道角是如何推广的吗?

(2) 象限角是如何定义的呢?

(3) 你熟练掌握具有相同终边角的表示了吗?会写终边落在x轴、y轴、直

线上的角的集合。

课后习题

作业:

1、习题1.1 a组第1,2,3题。

2.多举出一些日常生活中的“大于的角和负角”的例子,熟练掌握他们的表示,

进一步理解具有相同终边的角的特点。

板书

高一数学必修4教案设计(通用6篇)

手机扫码分享

Top